langchain/libs/partners/qdrant/README.md
Anush edd68e4ad4
qdrant: init package (#21146)
## Description

This PR introduces the new `langchain-qdrant` partner package, intending
to deprecate the community package.

## Changes

- Moved the Qdrant vector store implementation `/libs/partners/qdrant`
with integration tests.
- The conditional imports of the client library are now regular with
minor implementation improvements.
- Added a deprecation warning to
`langchain_community.vectorstores.qdrant.Qdrant`.
- Replaced references/imports from `langchain_community` with either
`langchain_core` or by moving the definitions to the `langchain_qdrant`
package itself.
- Updated the Qdrant vector store documentation to reflect the changes.

## Testing
- `QDRANT_URL` and
[`QDRANT_API_KEY`](583e36bf6b)
env values need to be set to [run integration
tests](d608c93d1f)
in the [cloud](https://cloud.qdrant.tech).
- If a Qdrant instance is running at `http://localhost:6333`, the
integration tests will use it too.
- By default, tests use an
[`in-memory`](https://github.com/qdrant/qdrant-client?tab=readme-ov-file#local-mode)
instance(Not comprehensive).

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
2024-05-13 18:20:03 -07:00

26 lines
503 B
Markdown

# langchain-qdrant
This package contains the LangChain integration with [Qdrant](https://qdrant.tech/).
## Installation
```bash
pip install -U langchain-qdrant
```
## Usage
The `Qdrant` class exposes the connection to the Qdrant vector store.
```python
from langchain_qdrant import Qdrant
embeddings = ... # use a LangChain Embeddings class
vectorstore = Qdrant.from_existing_collection(
embeddings=embeddings,
collection_name="<COLLECTION_NAME>",
url="http://localhost:6333",
)
```