mirror of
https://github.com/hwchase17/langchain
synced 2024-11-02 09:40:22 +00:00
c323742f4f
- **Description:** Adds MistralAIEmbeddings class for embeddings, using the new official API. - **Dependencies:** mistralai - **Tag maintainer**: @efriis, @hwchase17 - **Twitter handle:** @LMS_David_RS Create `integrations/text_embedding/mistralai.ipynb`: an example notebook for MistralAIEmbeddings class Modify `embeddings/__init__.py`: Import the class Create `embeddings/mistralai.py`: The embedding class Create `integration_tests/embeddings/test_mistralai.py`: The test file. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
1.3 KiB
1.3 KiB
langchain-mistralai
This package contains the LangChain integrations for MistralAI through their mistralai SDK.
Installation
pip install -U langchain-mistralai
Chat Models
This package contains the ChatMistralAI
class, which is the recommended way to interface with MistralAI models.
To use, install the requirements, and configure your environment.
export MISTRAL_API_KEY=your-api-key
Then initialize
from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI
chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)
ChatMistralAI
also supports async and streaming functionality:
# For async...
await chat.ainvoke(messages)
# For streaming...
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
Embeddings
With MistralAIEmbeddings
, you can directly use the default model 'mistral-embed', or set a different one if available.
Choose model
embedding.model = 'mistral-embed'
Simple query
res_query = embedding.embed_query("The test information")
Documents
res_document = embedding.embed_documents(["test1", "another test"])