langchain/templates/rag-multi-modal-local/README.md
esque 78521caf51
templates: Update README.md - Fixing a typo (#17689)
- **Description:** PR to fix typo in readme
    - **Issue:** typo in readme
    - **Dependencies:** no
    - **Twitter handle:** p_moolrajani
2024-02-22 13:19:37 -08:00

127 lines
4.2 KiB
Markdown

# rag-multi-modal-local
Visual search is a famililar application to many with iPhones or Android devices. It allows user to serch photos using natural language.
With the release of open source, multi-modal LLMs it's possible to build this kind of application for yourself for your own private photo collection.
This template demonstrates how to perform private visual search and question-answering over a collection of your photos.
It uses OpenCLIP embeddings to embed all of the photos and stores them in Chroma.
Given a question, relevant photos are retrieved and passed to an open source multi-modal LLM of your choice for answer synthesis.
![Diagram illustrating the visual search process with OpenCLIP embeddings and multi-modal LLM for question-answering, featuring example food pictures and a matcha soft serve answer trace.](https://github.com/langchain-ai/langchain/assets/122662504/da543b21-052c-4c43-939e-d4f882a45d75 "Visual Search Process Diagram")
## Input
Supply a set of photos in the `/docs` directory.
By default, this template has a toy collection of 3 food pictures.
Example questions to ask can be:
```
What kind of soft serve did I have?
```
In practice, a larger corpus of images can be tested.
To create an index of the images, run:
```
poetry install
python ingest.py
```
## Storage
This template will use [OpenCLIP](https://github.com/mlfoundations/open_clip) multi-modal embeddings to embed the images.
You can select different embedding model options (see results [here](https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_results.csv)).
The first time you run the app, it will automatically download the multimodal embedding model.
By default, LangChain will use an embedding model with moderate performance but lower memory requirments, `ViT-H-14`.
You can choose alternative `OpenCLIPEmbeddings` models in `rag_chroma_multi_modal/ingest.py`:
```
vectorstore_mmembd = Chroma(
collection_name="multi-modal-rag",
persist_directory=str(re_vectorstore_path),
embedding_function=OpenCLIPEmbeddings(
model_name="ViT-H-14", checkpoint="laion2b_s32b_b79k"
),
)
```
## LLM
This template will use [Ollama](https://python.langchain.com/docs/integrations/chat/ollama#multi-modal).
Download the latest version of Ollama: https://ollama.ai/
Pull the an open source multi-modal LLM: e.g., https://ollama.ai/library/bakllava
```
ollama pull bakllava
```
The app is by default configured for `bakllava`. But you can change this in `chain.py` and `ingest.py` for different downloaded models.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-chroma-multi-modal
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-chroma-multi-modal
```
And add the following code to your `server.py` file:
```python
from rag_chroma_multi_modal import chain as rag_chroma_multi_modal_chain
add_routes(app, rag_chroma_multi_modal_chain, path="/rag-chroma-multi-modal")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-chroma-multi-modal/playground](http://127.0.0.1:8000/rag-chroma-multi-modal/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-chroma-multi-modal")
```