langchain/templates/cassandra-entomology-rag/README.md
Erick Friis a1fae1fddd
Readme rewrite (#12615)
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-10-31 00:06:02 -07:00

89 lines
3.2 KiB
Markdown

# cassandra-entomology-rag
This template will perform RAG using Astra DB and Apache Cassandra®.
## Environment Setup
For the setup, you will require:
- an [Astra](https://astra.datastax.com) Vector Database. You must have a [Database Administrator token](https://awesome-astra.github.io/docs/pages/astra/create-token/#c-procedure), specifically the string starting with `AstraCS:...`.
- [Database ID](https://awesome-astra.github.io/docs/pages/astra/faq/#where-should-i-find-a-database-identifier).
- an **OpenAI API Key**. (More info [here](https://cassio.org/start_here/#llm-access))
You may also use a regular Cassandra cluster. In this case, provide the `USE_CASSANDRA_CLUSTER` entry as shown in `.env.template` and the subsequent environment variables to specify how to connect to it.
The connection parameters and secrets must be provided through environment variables. Refer to `.env.template` for the required variables.
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U "langchain-cli[serve]"
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package cassandra-entomology-rag
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add cassandra-entomology-rag
```
And add the following code to your `server.py` file:
```python
from cassandra_entomology_rag import chain as cassandra_entomology_rag_chain
add_routes(app, cassandra_entomology_rag_chain, path="/cassandra-entomology-rag")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
To populate the vector store, ensure that you have set all the environment variables, then from this directory, execute the following just once:
```shell
poetry run bash -c "cd [...]/cassandra_entomology_rag; python setup.py"
```
The output will be something like `Done (29 lines inserted).`.
Note: In a full application, the vector store might be populated in other ways. This step is to pre-populate the vector store with some rows for the demo RAG chains to work sensibly.
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/cassandra-entomology-rag/playground](http://127.0.0.1:8000/cassandra-entomology-rag/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/cassandra-entomology-rag")
```
## Reference
Stand-alone repo with LangServe chain: [here](https://github.com/hemidactylus/langserve_cassandra_entomology_rag).