mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
f61cb8d407
- **Description:** add openvino backend support by HuggingFace Optimum Intel, - **Dependencies:** “optimum[openvino]”, --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
125 lines
4.2 KiB
Python
Executable File
125 lines
4.2 KiB
Python
Executable File
"""Test HuggingFace Pipeline wrapper."""
|
|
|
|
from pathlib import Path
|
|
|
|
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
|
from langchain_community.llms.loading import load_llm
|
|
from tests.integration_tests.llms.utils import assert_llm_equality
|
|
|
|
|
|
def test_huggingface_pipeline_text_generation() -> None:
|
|
"""Test valid call to HuggingFace text generation model."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_pipeline_text2text_generation() -> None:
|
|
"""Test valid call to HuggingFace text2text generation model."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="google/flan-t5-small", task="text2text-generation"
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_pipeline_device_map() -> None:
|
|
"""Test pipelines specifying the device map parameter."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="gpt2",
|
|
task="text-generation",
|
|
device_map="auto",
|
|
pipeline_kwargs={"max_new_tokens": 10},
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def text_huggingface_pipeline_summarization() -> None:
|
|
"""Test valid call to HuggingFace summarization model."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="facebook/bart-large-cnn", task="summarization"
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_saving_loading_llm(tmp_path: Path) -> None:
|
|
"""Test saving/loading an HuggingFaceHub LLM."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
|
|
)
|
|
llm.save(file_path=tmp_path / "hf.yaml")
|
|
loaded_llm = load_llm(tmp_path / "hf.yaml")
|
|
assert_llm_equality(llm, loaded_llm)
|
|
|
|
|
|
def test_init_with_pipeline() -> None:
|
|
"""Test initialization with a HF pipeline."""
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
model_id = "gpt2"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForCausalLM.from_pretrained(model_id)
|
|
pipe = pipeline(
|
|
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
|
)
|
|
llm = HuggingFacePipeline(pipeline=pipe)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_pipeline_runtime_kwargs() -> None:
|
|
"""Test pipelines specifying the device map parameter."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="gpt2",
|
|
task="text-generation",
|
|
)
|
|
prompt = "Say foo:"
|
|
output = llm(prompt, pipeline_kwargs={"max_new_tokens": 2})
|
|
assert len(output) < 10
|
|
|
|
|
|
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
|
|
|
|
|
def test_huggingface_pipeline_text_generation_ov() -> None:
|
|
"""Test valid call to HuggingFace text generation model with openvino."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="gpt2",
|
|
task="text-generation",
|
|
backend="openvino",
|
|
model_kwargs={"device": "CPU", "ov_config": ov_config},
|
|
pipeline_kwargs={"max_new_tokens": 64},
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def test_huggingface_pipeline_text2text_generation_ov() -> None:
|
|
"""Test valid call to HuggingFace text2text generation model with openvino."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="google/flan-t5-small",
|
|
task="text2text-generation",
|
|
backend="openvino",
|
|
model_kwargs={"device": "CPU", "ov_config": ov_config},
|
|
pipeline_kwargs={"max_new_tokens": 64},
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|
|
|
|
|
|
def text_huggingface_pipeline_summarization_ov() -> None:
|
|
"""Test valid call to HuggingFace summarization model with openvino."""
|
|
llm = HuggingFacePipeline.from_model_id(
|
|
model_id="facebook/bart-large-cnn",
|
|
task="summarization",
|
|
backend="openvino",
|
|
model_kwargs={"device": "CPU", "ov_config": ov_config},
|
|
pipeline_kwargs={"max_new_tokens": 64},
|
|
)
|
|
output = llm("Say foo:")
|
|
assert isinstance(output, str)
|