langchain/libs/community/tests/integration_tests/llms/test_huggingface_pipeline.py

125 lines
4.2 KiB
Python
Raw Normal View History

"""Test HuggingFace Pipeline wrapper."""
from pathlib import Path
community[major], core[patch], langchain[patch], experimental[patch]: Create langchain-community (#14463) Moved the following modules to new package langchain-community in a backwards compatible fashion: ``` mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community mv langchain/langchain/adapters community/langchain_community mv langchain/langchain/callbacks community/langchain_community/callbacks mv langchain/langchain/chat_loaders community/langchain_community mv langchain/langchain/chat_models community/langchain_community mv langchain/langchain/document_loaders community/langchain_community mv langchain/langchain/docstore community/langchain_community mv langchain/langchain/document_transformers community/langchain_community mv langchain/langchain/embeddings community/langchain_community mv langchain/langchain/graphs community/langchain_community mv langchain/langchain/llms community/langchain_community mv langchain/langchain/memory/chat_message_histories community/langchain_community mv langchain/langchain/retrievers community/langchain_community mv langchain/langchain/storage community/langchain_community mv langchain/langchain/tools community/langchain_community mv langchain/langchain/utilities community/langchain_community mv langchain/langchain/vectorstores community/langchain_community mv langchain/langchain/agents/agent_toolkits community/langchain_community mv langchain/langchain/cache.py community/langchain_community ``` Moved the following to core ``` mv langchain/langchain/utils/json_schema.py core/langchain_core/utils mv langchain/langchain/utils/html.py core/langchain_core/utils mv langchain/langchain/utils/strings.py core/langchain_core/utils cat langchain/langchain/utils/env.py >> core/langchain_core/utils/env.py rm langchain/langchain/utils/env.py ``` See .scripts/community_split/script_integrations.sh for all changes
2023-12-11 21:53:30 +00:00
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_community.llms.loading import load_llm
from tests.integration_tests.llms.utils import assert_llm_equality
def test_huggingface_pipeline_text_generation() -> None:
"""Test valid call to HuggingFace text generation model."""
llm = HuggingFacePipeline.from_model_id(
enable the device_map parameter in huggingface pipeline (#12731) ### Enabling `device_map` in HuggingFacePipeline For multi-gpu settings with large models, the [accelerate](https://huggingface.co/docs/accelerate/usage_guides/big_modeling#using--accelerate) library provides the `device_map` parameter to automatically distribute the model across GPUs / disk. The [Transformers pipeline](https://github.com/huggingface/transformers/blob/3520e37e86913715959ff14fef76340010c8de57/src/transformers/pipelines/__init__.py#L543) enables users to specify `device` (or) `device_map`, and handles cases (with warnings) when both are specified. However, Langchain's HuggingFacePipeline only supports specifying `device` when calling transformers which limits large models and multi-gpu use-cases. Additionally, the [default value](https://github.com/praveenv/langchain/blob/8bd3ce59cd4ef80db5eb52922bb31588596939e1/libs/langchain/langchain/llms/huggingface_pipeline.py#L72) of `device` is initialized to `-1` , which is incompatible with the transformers pipeline when `device_map` is specified. This PR addresses the addition of `device_map` as a parameter , and solves the incompatibility of `device = -1` when `device_map` is also specified. An additional test has been added for this feature. Additionally, some existing tests no longer work since 1. `max_new_tokens` has to be specified under `pipeline_kwargs` and not `model_kwargs` 2. The GPT2 tokenizer raises a `ValueError: Pipeline with tokenizer without pad_token cannot do batching`, since the `tokenizer.pad_token` is `None` ([related issue](https://github.com/huggingface/transformers/issues/19853) on the transformers repo). This PR handles fixing these tests as well. Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
2023-11-02 21:29:06 +00:00
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
)
output = llm("Say foo:")
assert isinstance(output, str)
2022-12-17 15:53:22 +00:00
def test_huggingface_pipeline_text2text_generation() -> None:
"""Test valid call to HuggingFace text2text generation model."""
llm = HuggingFacePipeline.from_model_id(
model_id="google/flan-t5-small", task="text2text-generation"
)
output = llm("Say foo:")
assert isinstance(output, str)
enable the device_map parameter in huggingface pipeline (#12731) ### Enabling `device_map` in HuggingFacePipeline For multi-gpu settings with large models, the [accelerate](https://huggingface.co/docs/accelerate/usage_guides/big_modeling#using--accelerate) library provides the `device_map` parameter to automatically distribute the model across GPUs / disk. The [Transformers pipeline](https://github.com/huggingface/transformers/blob/3520e37e86913715959ff14fef76340010c8de57/src/transformers/pipelines/__init__.py#L543) enables users to specify `device` (or) `device_map`, and handles cases (with warnings) when both are specified. However, Langchain's HuggingFacePipeline only supports specifying `device` when calling transformers which limits large models and multi-gpu use-cases. Additionally, the [default value](https://github.com/praveenv/langchain/blob/8bd3ce59cd4ef80db5eb52922bb31588596939e1/libs/langchain/langchain/llms/huggingface_pipeline.py#L72) of `device` is initialized to `-1` , which is incompatible with the transformers pipeline when `device_map` is specified. This PR addresses the addition of `device_map` as a parameter , and solves the incompatibility of `device = -1` when `device_map` is also specified. An additional test has been added for this feature. Additionally, some existing tests no longer work since 1. `max_new_tokens` has to be specified under `pipeline_kwargs` and not `model_kwargs` 2. The GPT2 tokenizer raises a `ValueError: Pipeline with tokenizer without pad_token cannot do batching`, since the `tokenizer.pad_token` is `None` ([related issue](https://github.com/huggingface/transformers/issues/19853) on the transformers repo). This PR handles fixing these tests as well. Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
2023-11-02 21:29:06 +00:00
def test_huggingface_pipeline_device_map() -> None:
"""Test pipelines specifying the device map parameter."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
device_map="auto",
pipeline_kwargs={"max_new_tokens": 10},
)
output = llm("Say foo:")
assert isinstance(output, str)
def text_huggingface_pipeline_summarization() -> None:
"""Test valid call to HuggingFace summarization model."""
llm = HuggingFacePipeline.from_model_id(
model_id="facebook/bart-large-cnn", task="summarization"
)
output = llm("Say foo:")
assert isinstance(output, str)
def test_saving_loading_llm(tmp_path: Path) -> None:
"""Test saving/loading an HuggingFaceHub LLM."""
llm = HuggingFacePipeline.from_model_id(
enable the device_map parameter in huggingface pipeline (#12731) ### Enabling `device_map` in HuggingFacePipeline For multi-gpu settings with large models, the [accelerate](https://huggingface.co/docs/accelerate/usage_guides/big_modeling#using--accelerate) library provides the `device_map` parameter to automatically distribute the model across GPUs / disk. The [Transformers pipeline](https://github.com/huggingface/transformers/blob/3520e37e86913715959ff14fef76340010c8de57/src/transformers/pipelines/__init__.py#L543) enables users to specify `device` (or) `device_map`, and handles cases (with warnings) when both are specified. However, Langchain's HuggingFacePipeline only supports specifying `device` when calling transformers which limits large models and multi-gpu use-cases. Additionally, the [default value](https://github.com/praveenv/langchain/blob/8bd3ce59cd4ef80db5eb52922bb31588596939e1/libs/langchain/langchain/llms/huggingface_pipeline.py#L72) of `device` is initialized to `-1` , which is incompatible with the transformers pipeline when `device_map` is specified. This PR addresses the addition of `device_map` as a parameter , and solves the incompatibility of `device = -1` when `device_map` is also specified. An additional test has been added for this feature. Additionally, some existing tests no longer work since 1. `max_new_tokens` has to be specified under `pipeline_kwargs` and not `model_kwargs` 2. The GPT2 tokenizer raises a `ValueError: Pipeline with tokenizer without pad_token cannot do batching`, since the `tokenizer.pad_token` is `None` ([related issue](https://github.com/huggingface/transformers/issues/19853) on the transformers repo). This PR handles fixing these tests as well. Co-authored-by: Praveen Venkateswaran <praveen.venkateswaran@ibm.com>
2023-11-02 21:29:06 +00:00
model_id="gpt2", task="text-generation", pipeline_kwargs={"max_new_tokens": 10}
)
llm.save(file_path=tmp_path / "hf.yaml")
loaded_llm = load_llm(tmp_path / "hf.yaml")
assert_llm_equality(llm, loaded_llm)
def test_init_with_pipeline() -> None:
"""Test initialization with a HF pipeline."""
2023-08-10 17:39:29 +00:00
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline(
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
)
llm = HuggingFacePipeline(pipeline=pipe)
output = llm("Say foo:")
assert isinstance(output, str)
def test_huggingface_pipeline_runtime_kwargs() -> None:
"""Test pipelines specifying the device map parameter."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
)
prompt = "Say foo:"
output = llm(prompt, pipeline_kwargs={"max_new_tokens": 2})
assert len(output) < 10
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
def test_huggingface_pipeline_text_generation_ov() -> None:
"""Test valid call to HuggingFace text generation model with openvino."""
llm = HuggingFacePipeline.from_model_id(
model_id="gpt2",
task="text-generation",
backend="openvino",
model_kwargs={"device": "CPU", "ov_config": ov_config},
pipeline_kwargs={"max_new_tokens": 64},
)
output = llm("Say foo:")
assert isinstance(output, str)
def test_huggingface_pipeline_text2text_generation_ov() -> None:
"""Test valid call to HuggingFace text2text generation model with openvino."""
llm = HuggingFacePipeline.from_model_id(
model_id="google/flan-t5-small",
task="text2text-generation",
backend="openvino",
model_kwargs={"device": "CPU", "ov_config": ov_config},
pipeline_kwargs={"max_new_tokens": 64},
)
output = llm("Say foo:")
assert isinstance(output, str)
def text_huggingface_pipeline_summarization_ov() -> None:
"""Test valid call to HuggingFace summarization model with openvino."""
llm = HuggingFacePipeline.from_model_id(
model_id="facebook/bart-large-cnn",
task="summarization",
backend="openvino",
model_kwargs={"device": "CPU", "ov_config": ov_config},
pipeline_kwargs={"max_new_tokens": 64},
)
output = llm("Say foo:")
assert isinstance(output, str)