langchain/templates/openai-functions-tool-retrieval-agent/openai_functions_tool_retrieval_agent/agent.py

124 lines
3.7 KiB
Python

from typing import Dict, List, Tuple
from langchain.agents import (
AgentExecutor,
Tool,
)
from langchain.agents.format_scratchpad import format_to_openai_functions
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.prompts import (
ChatPromptTemplate,
MessagesPlaceholder,
)
from langchain.schema import Document
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
from langchain_community.chat_models import ChatOpenAI
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.vectorstores import FAISS
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.runnables import Runnable, RunnableLambda, RunnableParallel
from langchain_core.tools import BaseTool
# Create the tools
search = TavilySearchAPIWrapper()
description = """"Useful for when you need to answer questions \
about current events or about recent information."""
tavily_tool = TavilySearchResults(api_wrapper=search, description=description)
def fake_func(inp: str) -> str:
return "foo"
fake_tools = [
Tool(
name=f"foo-{i}",
func=fake_func,
description=("a silly function that gets info " f"about the number {i}"),
)
for i in range(99)
]
ALL_TOOLS: List[BaseTool] = [tavily_tool] + fake_tools
# turn tools into documents for indexing
docs = [
Document(page_content=t.description, metadata={"index": i})
for i, t in enumerate(ALL_TOOLS)
]
vector_store = FAISS.from_documents(docs, OpenAIEmbeddings())
retriever = vector_store.as_retriever()
def get_tools(query: str) -> List[Tool]:
docs = retriever.get_relevant_documents(query)
return [ALL_TOOLS[d.metadata["index"]] for d in docs]
assistant_system_message = """You are a helpful assistant. \
Use tools (only if necessary) to best answer the users questions."""
assistant_system_message = """You are a helpful assistant. \
Use tools (only if necessary) to best answer the users questions."""
prompt = ChatPromptTemplate.from_messages(
[
("system", assistant_system_message),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
def llm_with_tools(input: Dict) -> Runnable:
return RunnableLambda(lambda x: x["input"]) | ChatOpenAI(temperature=0).bind(
functions=input["functions"]
)
def _format_chat_history(chat_history: List[Tuple[str, str]]):
buffer = []
for human, ai in chat_history:
buffer.append(HumanMessage(content=human))
buffer.append(AIMessage(content=ai))
return buffer
agent = (
RunnableParallel(
{
"input": lambda x: x["input"],
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
"agent_scratchpad": lambda x: format_to_openai_functions(
x["intermediate_steps"]
),
"functions": lambda x: [
format_tool_to_openai_function(tool) for tool in get_tools(x["input"])
],
}
)
| {
"input": prompt,
"functions": lambda x: x["functions"],
}
| llm_with_tools
| OpenAIFunctionsAgentOutputParser()
)
# LLM chain consisting of the LLM and a prompt
class AgentInput(BaseModel):
input: str
chat_history: List[Tuple[str, str]] = Field(
..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}}
)
agent_executor = AgentExecutor(agent=agent, tools=ALL_TOOLS).with_types(
input_type=AgentInput
)