from typing import Dict, List, Tuple from langchain.agents import ( AgentExecutor, Tool, ) from langchain.agents.format_scratchpad import format_to_openai_functions from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser from langchain.prompts import ( ChatPromptTemplate, MessagesPlaceholder, ) from langchain.schema import Document from langchain.utilities.tavily_search import TavilySearchAPIWrapper from langchain_community.chat_models import ChatOpenAI from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.tools.convert_to_openai import format_tool_to_openai_function from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.vectorstores import FAISS from langchain_core.messages import AIMessage, HumanMessage from langchain_core.pydantic_v1 import BaseModel, Field from langchain_core.runnables import Runnable, RunnableLambda, RunnableParallel from langchain_core.tools import BaseTool # Create the tools search = TavilySearchAPIWrapper() description = """"Useful for when you need to answer questions \ about current events or about recent information.""" tavily_tool = TavilySearchResults(api_wrapper=search, description=description) def fake_func(inp: str) -> str: return "foo" fake_tools = [ Tool( name=f"foo-{i}", func=fake_func, description=("a silly function that gets info " f"about the number {i}"), ) for i in range(99) ] ALL_TOOLS: List[BaseTool] = [tavily_tool] + fake_tools # turn tools into documents for indexing docs = [ Document(page_content=t.description, metadata={"index": i}) for i, t in enumerate(ALL_TOOLS) ] vector_store = FAISS.from_documents(docs, OpenAIEmbeddings()) retriever = vector_store.as_retriever() def get_tools(query: str) -> List[Tool]: docs = retriever.get_relevant_documents(query) return [ALL_TOOLS[d.metadata["index"]] for d in docs] assistant_system_message = """You are a helpful assistant. \ Use tools (only if necessary) to best answer the users questions.""" assistant_system_message = """You are a helpful assistant. \ Use tools (only if necessary) to best answer the users questions.""" prompt = ChatPromptTemplate.from_messages( [ ("system", assistant_system_message), MessagesPlaceholder(variable_name="chat_history"), ("user", "{input}"), MessagesPlaceholder(variable_name="agent_scratchpad"), ] ) def llm_with_tools(input: Dict) -> Runnable: return RunnableLambda(lambda x: x["input"]) | ChatOpenAI(temperature=0).bind( functions=input["functions"] ) def _format_chat_history(chat_history: List[Tuple[str, str]]): buffer = [] for human, ai in chat_history: buffer.append(HumanMessage(content=human)) buffer.append(AIMessage(content=ai)) return buffer agent = ( RunnableParallel( { "input": lambda x: x["input"], "chat_history": lambda x: _format_chat_history(x["chat_history"]), "agent_scratchpad": lambda x: format_to_openai_functions( x["intermediate_steps"] ), "functions": lambda x: [ format_tool_to_openai_function(tool) for tool in get_tools(x["input"]) ], } ) | { "input": prompt, "functions": lambda x: x["functions"], } | llm_with_tools | OpenAIFunctionsAgentOutputParser() ) # LLM chain consisting of the LLM and a prompt class AgentInput(BaseModel): input: str chat_history: List[Tuple[str, str]] = Field( ..., extra={"widget": {"type": "chat", "input": "input", "output": "output"}} ) agent_executor = AgentExecutor(agent=agent, tools=ALL_TOOLS).with_types( input_type=AgentInput )