langchain/templates/rag-lantern/README.md
gustavo-yt 7c26ef88a1
templates: Add rag lantern template (#16523)
Replace this entire comment with:
  - **Description:** Added a template for lantern rag usage.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-19 02:34:46 +00:00

130 lines
3.8 KiB
Markdown

# rag_lantern
This template performs RAG with Lantern.
[Lantern](https://lantern.dev) is an open-source vector database built on top of [PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL). It enables vector search and embedding generation inside your database.
## Environment Setup
Set the `OPENAI_API_KEY` environment variable to access the OpenAI models.
To get your `OPENAI_API_KEY`, navigate to [API keys](https://platform.openai.com/account/api-keys) on your OpenAI account and create a new secret key.
To find your `LANTERN_URL` and `LANTERN_SERVICE_KEY`, head to your Lantern project's [API settings](https://lantern.dev/dashboard/project/_/settings/api).
- `LANTERN_URL` corresponds to the Project URL
- `LANTERN_SERVICE_KEY` corresponds to the `service_role` API key
```shell
export LANTERN_URL=
export LANTERN_SERVICE_KEY=
export OPENAI_API_KEY=
```
## Setup Lantern Database
Use these steps to setup your Lantern database if you haven't already.
1. Head to [https://lantern.dev](https://lantern.dev) to create your Lantern database.
2. In your favorite SQL client, jump to the SQL editor and run the following script to setup your database as a vector store:
```sql
-- Create a table to store your documents
create table
documents (
id uuid primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding REAL[1536] -- 1536 works for OpenAI embeddings, change as needed
);
-- Create a function to search for documents
create function match_documents (
query_embedding REAL[1536],
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata jsonb,
similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding;
end;
$$;
```
## Setup Environment Variables
Since we are using [`Lantern`](https://python.langchain.com/docs/integrations/vectorstores/lantern) and [`OpenAIEmbeddings`](https://python.langchain.com/docs/integrations/text_embedding/openai), we need to load their API keys.
## Usage
First, install the LangChain CLI:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-lantern
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-lantern
```
And add the following code to your `server.py` file:
```python
from rag_lantern.chain import chain as rag_lantern_chain
add_routes(app, rag_lantern_chain, path="/rag-lantern")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-lantern/playground](http://127.0.0.1:8000/rag-lantern/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-lantern")
```