mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
6cc6faa00e
Co-authored-by: Asaf Gardin <asafg@ai21.com> Co-authored-by: etang <etang@ai21.com> Co-authored-by: asafgardin <147075902+asafgardin@users.noreply.github.com>
1.6 KiB
1.6 KiB
langchain-ai21
This package contains the LangChain integrations for AI21 through their AI21 SDK.
Installation and Setup
- Install the AI21 partner package
pip install langchain-ai21
- Get an AI21 api key and set it as an environment variable (
AI21_API_KEY
)
Chat Models
This package contains the ChatAI21
class, which is the recommended way to interface with AI21 Chat models.
To use, install the requirements, and configure your environment.
export AI21_API_KEY=your-api-key
Then initialize
from langchain_core.messages import HumanMessage
from langchain_ai21.chat_models import ChatAI21
chat = ChatAI21(model="j2-ultra")
messages = [HumanMessage(content="Hello from AI21")]
chat.invoke(messages)
LLMs
You can use AI21's generative AI models as Langchain LLMs:
from langchain.prompts import PromptTemplate
from langchain_ai21 import AI21LLM
llm = AI21LLM(model="j2-ultra")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
chain = prompt | llm
question = "Which scientist discovered relativity?"
print(chain.invoke({"question": question}))
Embeddings
You can use AI21's embeddings models as:
Query
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
embeddings.embed_query("Hello! This is some query")
Document
from langchain_ai21 import AI21Embeddings
embeddings = AI21Embeddings()
embeddings.embed_documents(["Hello! This is document 1", "And this is document 2!"])