langchain/templates/rag-supabase/README.md
Erick Friis ebf998acb6
Templates (#12294)
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Jacob Lee <jacoblee93@gmail.com>
2023-10-25 18:47:42 -07:00

104 lines
3.1 KiB
Markdown

# RAG with Supabase
> [Supabase](https://supabase.com/docs) is an open-source Firebase alternative. It is built on top of [PostgreSQL](https://en.wikipedia.org/wiki/PostgreSQL), a free and open-source relational database management system (RDBMS) and uses [pgvector](https://github.com/pgvector/pgvector) to store embeddings within your tables.
Use this package to host a retrieval augment generation (RAG) API using LangServe + Supabase.
## Install Package
From within your `langservehub` project run:
```shell
poetry run poe add rag-supabase
```
## Setup Supabase Database
Use these steps to setup your Supabase database if you haven't already.
1. Head over to https://database.new to provision your Supabase database.
2. In the studio, jump to the [SQL editor](https://supabase.com/dashboard/project/_/sql/new) and run the following script to enable `pgvector` and setup your database as a vector store:
```sql
-- Enable the pgvector extension to work with embedding vectors
create extension if not exists vector;
-- Create a table to store your documents
create table
documents (
id uuid primary key,
content text, -- corresponds to Document.pageContent
metadata jsonb, -- corresponds to Document.metadata
embedding vector (1536) -- 1536 works for OpenAI embeddings, change as needed
);
-- Create a function to search for documents
create function match_documents (
query_embedding vector (1536),
filter jsonb default '{}'
) returns table (
id uuid,
content text,
metadata jsonb,
similarity float
) language plpgsql as $$
#variable_conflict use_column
begin
return query
select
id,
content,
metadata,
1 - (documents.embedding <=> query_embedding) as similarity
from documents
where metadata @> filter
order by documents.embedding <=> query_embedding;
end;
$$;
```
## Setup Environment Variables
Since we are using [`SupabaseVectorStore`](https://python.langchain.com/docs/integrations/vectorstores/supabase) and [`OpenAIEmbeddings`](https://python.langchain.com/docs/integrations/text_embedding/openai), we need to load their API keys.
Create a `.env` file in the root of your project:
_.env_
```shell
SUPABASE_URL=
SUPABASE_SERVICE_KEY=
OPENAI_API_KEY=
```
To find your `SUPABASE_URL` and `SUPABASE_SERVICE_KEY`, head to your Supabase project's [API settings](https://supabase.com/dashboard/project/_/settings/api).
- `SUPABASE_URL` corresponds to the Project URL
- `SUPABASE_SERVICE_KEY` corresponds to the `service_role` API key
To get your `OPENAI_API_KEY`, navigate to [API keys](https://platform.openai.com/account/api-keys) on your OpenAI account and create a new secret key.
Add this file to your `.gitignore` if it isn't already there (so that we don't commit secrets):
_.gitignore_
```
.env
```
Install [`python-dotenv`](https://github.com/theskumar/python-dotenv) which we will use to load the environment variables into the app:
```shell
poetry add python-dotenv
```
Finally, call `load_dotenv()` in `server.py`.
_app/server.py_
```python
from dotenv import load_dotenv
load_dotenv()
```