mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
db13fba7ea
Neo4j has added vector index integration just recently. To allow both ingestion and integrating it as vector RAG applications, I wrapped it as a vector store as the implementation is completely different from `GraphCypherQAChain`. Here, we are not generating any Cypher statements at query time, we are simply doing the vector similarity search using the new vector index as if we were dealing with a vector database. --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
441 lines
17 KiB
Plaintext
441 lines
17 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Neo4j Vector Index\n",
|
||
"\n",
|
||
">[Neo4j](https://neo4j.com/) is an open-source graph database with integrated support for vector similarity search\n",
|
||
"\n",
|
||
"It supports:\n",
|
||
"- approximate nearest neighbor search\n",
|
||
"- L2 distance and cosine distance\n",
|
||
"\n",
|
||
"This notebook shows how to use the Neo4j vector index (`Neo4jVector`)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"See the [installation instruction](https://neo4j.com/docs/operations-manual/current/installation/)."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"tags": []
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Requirement already satisfied: neo4j in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (5.11.0)\n",
|
||
"Requirement already satisfied: pytz in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from neo4j) (2023.3)\n",
|
||
"Requirement already satisfied: openai in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (0.27.6)\n",
|
||
"Requirement already satisfied: requests>=2.20 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from openai) (2.31.0)\n",
|
||
"Requirement already satisfied: tqdm in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from openai) (4.66.1)\n",
|
||
"Requirement already satisfied: aiohttp in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from openai) (3.8.5)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.20->openai) (3.2.0)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.20->openai) (3.4)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.20->openai) (2.0.4)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.20->openai) (2023.7.22)\n",
|
||
"Requirement already satisfied: attrs>=17.3.0 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from aiohttp->openai) (23.1.0)\n",
|
||
"Requirement already satisfied: multidict<7.0,>=4.5 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from aiohttp->openai) (6.0.4)\n",
|
||
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from aiohttp->openai) (4.0.3)\n",
|
||
"Requirement already satisfied: yarl<2.0,>=1.0 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from aiohttp->openai) (1.9.2)\n",
|
||
"Requirement already satisfied: frozenlist>=1.1.1 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from aiohttp->openai) (1.4.0)\n",
|
||
"Requirement already satisfied: aiosignal>=1.1.2 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from aiohttp->openai) (1.3.1)\n",
|
||
"Requirement already satisfied: tiktoken in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (0.4.0)\n",
|
||
"Requirement already satisfied: regex>=2022.1.18 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from tiktoken) (2023.8.8)\n",
|
||
"Requirement already satisfied: requests>=2.26.0 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from tiktoken) (2.31.0)\n",
|
||
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.26.0->tiktoken) (3.2.0)\n",
|
||
"Requirement already satisfied: idna<4,>=2.5 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.26.0->tiktoken) (3.4)\n",
|
||
"Requirement already satisfied: urllib3<3,>=1.21.1 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.26.0->tiktoken) (2.0.4)\n",
|
||
"Requirement already satisfied: certifi>=2017.4.17 in /home/tomaz/anaconda3/envs/myenv/lib/python3.11/site-packages (from requests>=2.26.0->tiktoken) (2023.7.22)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Pip install necessary package\n",
|
||
"!pip install neo4j\n",
|
||
"!pip install openai\n",
|
||
"!pip install tiktoken"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdin",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"OpenAI API Key: ········\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import os\n",
|
||
"import getpass\n",
|
||
"\n",
|
||
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"tags": []
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||
"from langchain.vectorstores import Neo4jVector\n",
|
||
"from langchain.document_loaders import TextLoader\n",
|
||
"from langchain.docstore.document import Document"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
|
||
"documents = loader.load()\n",
|
||
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
|
||
"docs = text_splitter.split_documents(documents)\n",
|
||
"\n",
|
||
"embeddings = OpenAIEmbeddings()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Neo4jVector requires the Neo4j database credentials\n",
|
||
"\n",
|
||
"url = \"bolt://localhost:7687\"\n",
|
||
"username = \"neo4j\"\n",
|
||
"password = \"pleaseletmein\"\n",
|
||
"\n",
|
||
"# You can also use environment variables instead of directly passing named parameters\n",
|
||
"#os.environ[\"NEO4J_URL\"] = \"bolt://localhost:7687\"\n",
|
||
"#os.environ[\"NEO4J_USERNAME\"] = \"neo4j\"\n",
|
||
"#os.environ[\"NEO4J_PASSWORD\"] = \"pleaseletmein\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Similarity Search with Cosine Distance (Default)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# The Neo4jVector Module will connect to Neo4j and create a vector index if needed.\n",
|
||
"\n",
|
||
"db = Neo4jVector.from_documents(\n",
|
||
" docs, OpenAIEmbeddings(), url=url, username=username, password=password\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
|
||
"docs_with_score = db.similarity_search_with_score(query)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"--------------------------------------------------------------------------------\n",
|
||
"Score: 0.9077161550521851\n",
|
||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||
"\n",
|
||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||
"\n",
|
||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||
"\n",
|
||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"Score: 0.9077161550521851\n",
|
||
"Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \n",
|
||
"\n",
|
||
"Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \n",
|
||
"\n",
|
||
"One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \n",
|
||
"\n",
|
||
"And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"Score: 0.891287088394165\n",
|
||
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
|
||
"\n",
|
||
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n",
|
||
"\n",
|
||
"We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n",
|
||
"\n",
|
||
"We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n",
|
||
"\n",
|
||
"We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n",
|
||
"\n",
|
||
"We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"--------------------------------------------------------------------------------\n",
|
||
"Score: 0.891287088394165\n",
|
||
"A former top litigator in private practice. A former federal public defender. And from a family of public school educators and police officers. A consensus builder. Since she’s been nominated, she’s received a broad range of support—from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. \n",
|
||
"\n",
|
||
"And if we are to advance liberty and justice, we need to secure the Border and fix the immigration system. \n",
|
||
"\n",
|
||
"We can do both. At our border, we’ve installed new technology like cutting-edge scanners to better detect drug smuggling. \n",
|
||
"\n",
|
||
"We’ve set up joint patrols with Mexico and Guatemala to catch more human traffickers. \n",
|
||
"\n",
|
||
"We’re putting in place dedicated immigration judges so families fleeing persecution and violence can have their cases heard faster. \n",
|
||
"\n",
|
||
"We’re securing commitments and supporting partners in South and Central America to host more refugees and secure their own borders.\n",
|
||
"--------------------------------------------------------------------------------\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"for doc, score in docs_with_score:\n",
|
||
" print(\"-\" * 80)\n",
|
||
" print(\"Score: \", score)\n",
|
||
" print(doc.page_content)\n",
|
||
" print(\"-\" * 80)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Working with vectorstore\n",
|
||
"\n",
|
||
"Above, we created a vectorstore from scratch. However, often times we want to work with an existing vectorstore.\n",
|
||
"In order to do that, we can initialize it directly."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"index_name = \"vector\" # default index name\n",
|
||
"\n",
|
||
"store = Neo4jVector.from_existing_index(\n",
|
||
" OpenAIEmbeddings(),\n",
|
||
" url=url,\n",
|
||
" username=username,\n",
|
||
" password=password,\n",
|
||
" index_name=index_name,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Add documents\n",
|
||
"We can add documents to the existing vectorstore."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"['2f70679a-4416-11ee-b7c3-d46a6aa24f5b']"
|
||
]
|
||
},
|
||
"execution_count": 10,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"store.add_documents([Document(page_content=\"foo\")])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"docs_with_score = store.similarity_search_with_score(\"foo\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {
|
||
"scrolled": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"(Document(page_content='foo', metadata={}), 1.0)"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"docs_with_score[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Retriever options\n",
|
||
"\n",
|
||
"This section shows how to use `Neo4jVector` as a retriever."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Document(page_content='Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you’re at it, pass the Disclose Act so Americans can know who is funding our elections. \\n\\nTonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. \\n\\nOne of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. \\n\\nAnd I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.', metadata={'source': '../../modules/state_of_the_union.txt'})"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"retriever = store.as_retriever()\n",
|
||
"retriever.get_relevant_documents(query)[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Question Answering with Sources\n",
|
||
"\n",
|
||
"This section goes over how to do question-answering with sources over an Index. It does this by using the `RetrievalQAWithSourcesChain`, which does the lookup of the documents from an Index. "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"from langchain.chains import RetrievalQAWithSourcesChain\n",
|
||
"from langchain.chat_models import ChatOpenAI"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"chain = RetrievalQAWithSourcesChain.from_chain_type(\n",
|
||
" ChatOpenAI(temperature=0), chain_type=\"stuff\", retriever=retriever\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"{'answer': \"The president honored Justice Stephen Breyer, who is retiring from the United States Supreme Court, and thanked him for his service. The president also mentioned that he nominated Circuit Court of Appeals Judge Ketanji Brown Jackson to continue Justice Breyer's legacy of excellence. \\n\",\n",
|
||
" 'sources': '../../modules/state_of_the_union.txt'}"
|
||
]
|
||
},
|
||
"execution_count": 16,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"chain(\n",
|
||
" {\"question\": \"What did the president say about Justice Breyer\"},\n",
|
||
" return_only_outputs=True,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.11.4"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|