mirror of
https://github.com/hwchase17/langchain
synced 2024-10-31 15:20:26 +00:00
b5cd1e0fed
Clearly document that the PAL and CPAL techniques involve generating code, and that such code must be properly sandboxed and given appropriate narrowly-scoped credentials in order to ensure security. While our implementations include some mitigations, Python and SQL sandboxing is well-known to be a very hard problem and our mitigations are no replacement for proper sandboxing and permissions management. The implementation of such techniques must be performed outside the scope of the Python process where this package's code runs, so its correct setup and administration must therefore be the responsibility of the user of this code.
305 lines
12 KiB
Python
305 lines
12 KiB
Python
"""Implements Program-Aided Language Models.
|
|
|
|
This module implements the Program-Aided Language Models (PAL) for generating code
|
|
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
|
|
(https://arxiv.org/pdf/2211.10435.pdf).
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import ast
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
from langchain.chains.base import Chain
|
|
from langchain.chains.llm import LLMChain
|
|
from langchain.schema.language_model import BaseLanguageModel
|
|
from langchain.utilities import PythonREPL
|
|
|
|
from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT
|
|
from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT
|
|
from langchain_experimental.pydantic_v1 import Extra, Field
|
|
|
|
COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval"]
|
|
|
|
|
|
class PALValidation:
|
|
SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef
|
|
SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name
|
|
|
|
def __init__(
|
|
self,
|
|
solution_expression_name: Optional[str] = None,
|
|
solution_expression_type: Optional[type] = None,
|
|
allow_imports: bool = False,
|
|
allow_command_exec: bool = False,
|
|
):
|
|
"""Initialize a PALValidation instance.
|
|
|
|
Args:
|
|
solution_expression_name (str): Name of the expected solution expression.
|
|
If passed, solution_expression_type must be passed as well.
|
|
solution_expression_type (str): AST type of the expected solution
|
|
expression. If passed, solution_expression_name must be passed as well.
|
|
Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
|
|
PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE.
|
|
allow_imports (bool): Allow import statements.
|
|
allow_command_exec (bool): Allow using known command execution functions.
|
|
"""
|
|
self.solution_expression_name = solution_expression_name
|
|
self.solution_expression_type = solution_expression_type
|
|
|
|
if solution_expression_name is not None:
|
|
if not isinstance(self.solution_expression_name, str):
|
|
raise ValueError(
|
|
f"Expected solution_expression_name to be str, "
|
|
f"instead found {type(self.solution_expression_name)}"
|
|
)
|
|
if solution_expression_type is not None:
|
|
if (
|
|
self.solution_expression_type
|
|
is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION
|
|
and self.solution_expression_type
|
|
is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE
|
|
):
|
|
raise ValueError(
|
|
f"Expected solution_expression_type to be one of "
|
|
f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION},"
|
|
f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE}),"
|
|
f"instead found {self.solution_expression_type}"
|
|
)
|
|
|
|
if solution_expression_name is not None and solution_expression_type is None:
|
|
raise TypeError(
|
|
"solution_expression_name "
|
|
"requires solution_expression_type to be passed as well"
|
|
)
|
|
if solution_expression_name is None and solution_expression_type is not None:
|
|
raise TypeError(
|
|
"solution_expression_type "
|
|
"requires solution_expression_name to be passed as well"
|
|
)
|
|
|
|
self.allow_imports = allow_imports
|
|
self.allow_command_exec = allow_command_exec
|
|
|
|
|
|
class PALChain(Chain):
|
|
"""Implements Program-Aided Language Models (PAL).
|
|
|
|
This class implements the Program-Aided Language Models (PAL) for generating code
|
|
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
|
|
(https://arxiv.org/pdf/2211.10435.pdf).
|
|
|
|
*Security note*: This class implements an AI technique that generates and evaluates
|
|
Python code, which can be dangerous and requires a specially sandboxed
|
|
environment to be safely used. While this class implements some basic guardrails
|
|
by limiting available locals/globals and by parsing and inspecting
|
|
the generated Python AST using `PALValidation`, those guardrails will not
|
|
deter sophisticated attackers and are not a replacement for a proper sandbox.
|
|
Do not use this class on untrusted inputs, with elevated permissions,
|
|
or without consulting your security team about proper sandboxing!
|
|
"""
|
|
|
|
llm_chain: LLMChain
|
|
stop: str = "\n\n"
|
|
"""Stop token to use when generating code."""
|
|
get_answer_expr: str = "print(solution())"
|
|
"""Expression to use to get the answer from the generated code."""
|
|
python_globals: Optional[Dict[str, Any]] = None
|
|
"""Python globals and locals to use when executing the generated code."""
|
|
python_locals: Optional[Dict[str, Any]] = None
|
|
"""Python globals and locals to use when executing the generated code."""
|
|
output_key: str = "result" #: :meta private:
|
|
return_intermediate_steps: bool = False
|
|
"""Whether to return intermediate steps in the generated code."""
|
|
code_validations: PALValidation = Field(default_factory=PALValidation)
|
|
"""Validations to perform on the generated code."""
|
|
timeout: Optional[int] = 10
|
|
"""Timeout in seconds for the generated code to execute."""
|
|
|
|
class Config:
|
|
"""Configuration for this pydantic object."""
|
|
|
|
extra = Extra.forbid
|
|
arbitrary_types_allowed = True
|
|
|
|
@property
|
|
def input_keys(self) -> List[str]:
|
|
"""Return the singular input key.
|
|
|
|
:meta private:
|
|
"""
|
|
return self.llm_chain.prompt.input_variables
|
|
|
|
@property
|
|
def output_keys(self) -> List[str]:
|
|
"""Return the singular output key.
|
|
|
|
:meta private:
|
|
"""
|
|
if not self.return_intermediate_steps:
|
|
return [self.output_key]
|
|
else:
|
|
return [self.output_key, "intermediate_steps"]
|
|
|
|
def _call(
|
|
self,
|
|
inputs: Dict[str, Any],
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
) -> Dict[str, str]:
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
code = self.llm_chain.predict(
|
|
stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
|
|
)
|
|
_run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
|
|
PALChain.validate_code(code, self.code_validations)
|
|
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
|
|
res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout)
|
|
output = {self.output_key: res.strip()}
|
|
if self.return_intermediate_steps:
|
|
output["intermediate_steps"] = code
|
|
return output
|
|
|
|
@classmethod
|
|
def validate_code(cls, code: str, code_validations: PALValidation) -> None:
|
|
try:
|
|
code_tree = ast.parse(code)
|
|
except (SyntaxError, UnicodeDecodeError):
|
|
raise ValueError(f"Generated code is not valid python code: {code}")
|
|
except TypeError:
|
|
raise ValueError(
|
|
f"Generated code is expected to be a string, "
|
|
f"instead found {type(code)}"
|
|
)
|
|
except OverflowError:
|
|
raise ValueError(
|
|
f"Generated code too long / complex to be parsed by ast: {code}"
|
|
)
|
|
|
|
found_solution_expr = False
|
|
if code_validations.solution_expression_name is None:
|
|
# Skip validation if no solution_expression_name was given
|
|
found_solution_expr = True
|
|
|
|
has_imports = False
|
|
top_level_nodes = list(ast.iter_child_nodes(code_tree))
|
|
for node in top_level_nodes:
|
|
if (
|
|
code_validations.solution_expression_name is not None
|
|
and code_validations.solution_expression_type is not None
|
|
):
|
|
# Check root nodes (like func def)
|
|
if (
|
|
isinstance(node, code_validations.solution_expression_type)
|
|
and hasattr(node, "name")
|
|
and node.name == code_validations.solution_expression_name
|
|
):
|
|
found_solution_expr = True
|
|
# Check assigned nodes (like answer variable)
|
|
if isinstance(node, ast.Assign):
|
|
for target_node in node.targets:
|
|
if (
|
|
isinstance(
|
|
target_node, code_validations.solution_expression_type
|
|
)
|
|
and hasattr(target_node, "id")
|
|
and target_node.id
|
|
== code_validations.solution_expression_name
|
|
):
|
|
found_solution_expr = True
|
|
if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom):
|
|
has_imports = True
|
|
|
|
if not found_solution_expr:
|
|
raise ValueError(
|
|
f"Generated code is missing the solution expression: "
|
|
f"{code_validations.solution_expression_name} of type: "
|
|
f"{code_validations.solution_expression_type}"
|
|
)
|
|
|
|
if not code_validations.allow_imports and has_imports:
|
|
raise ValueError(f"Generated code has disallowed imports: {code}")
|
|
|
|
if (
|
|
not code_validations.allow_command_exec
|
|
or not code_validations.allow_imports
|
|
):
|
|
for node in ast.walk(code_tree):
|
|
if (
|
|
(not code_validations.allow_command_exec)
|
|
and isinstance(node, ast.Call)
|
|
and (
|
|
(
|
|
hasattr(node.func, "id")
|
|
and node.func.id in COMMAND_EXECUTION_FUNCTIONS
|
|
)
|
|
or (
|
|
isinstance(node.func, ast.Attribute)
|
|
and node.func.attr in COMMAND_EXECUTION_FUNCTIONS
|
|
)
|
|
)
|
|
):
|
|
raise ValueError(
|
|
f"Found illegal command execution function "
|
|
f"{node.func.id} in code {code}"
|
|
)
|
|
|
|
if (not code_validations.allow_imports) and (
|
|
isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom)
|
|
):
|
|
raise ValueError(f"Generated code has disallowed imports: {code}")
|
|
|
|
@classmethod
|
|
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
|
|
"""Load PAL from math prompt.
|
|
|
|
Args:
|
|
llm (BaseLanguageModel): The language model to use for generating code.
|
|
|
|
Returns:
|
|
PALChain: An instance of PALChain.
|
|
"""
|
|
llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
|
|
code_validations = PALValidation(
|
|
solution_expression_name="solution",
|
|
solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
|
|
)
|
|
|
|
return cls(
|
|
llm_chain=llm_chain,
|
|
stop="\n\n",
|
|
get_answer_expr="print(solution())",
|
|
code_validations=code_validations,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_colored_object_prompt(
|
|
cls, llm: BaseLanguageModel, **kwargs: Any
|
|
) -> PALChain:
|
|
"""Load PAL from colored object prompt.
|
|
|
|
Args:
|
|
llm (BaseLanguageModel): The language model to use for generating code.
|
|
|
|
Returns:
|
|
PALChain: An instance of PALChain.
|
|
"""
|
|
llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
|
|
code_validations = PALValidation(
|
|
solution_expression_name="answer",
|
|
solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE,
|
|
)
|
|
return cls(
|
|
llm_chain=llm_chain,
|
|
stop="\n\n\n",
|
|
get_answer_expr="print(answer)",
|
|
code_validations=code_validations,
|
|
**kwargs,
|
|
)
|
|
|
|
@property
|
|
def _chain_type(self) -> str:
|
|
return "pal_chain"
|