2023-07-21 20:32:39 +00:00
|
|
|
"""Implements Program-Aided Language Models.
|
|
|
|
|
|
|
|
This module implements the Program-Aided Language Models (PAL) for generating code
|
|
|
|
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
|
|
|
|
(https://arxiv.org/pdf/2211.10435.pdf).
|
|
|
|
"""
|
|
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
import ast
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
|
|
|
|
from langchain.callbacks.manager import CallbackManagerForChainRun
|
|
|
|
from langchain.chains.base import Chain
|
|
|
|
from langchain.chains.llm import LLMChain
|
|
|
|
from langchain.schema.language_model import BaseLanguageModel
|
|
|
|
from langchain.utilities import PythonREPL
|
2023-07-22 01:44:32 +00:00
|
|
|
|
|
|
|
from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT
|
|
|
|
from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT
|
Use a submodule for pydantic v1 compat (#9371)
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
2023-08-17 15:35:49 +00:00
|
|
|
from langchain_experimental.pydantic_v1 import Extra, Field
|
2023-07-21 20:32:39 +00:00
|
|
|
|
|
|
|
COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval"]
|
|
|
|
|
|
|
|
|
|
|
|
class PALValidation:
|
|
|
|
SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef
|
|
|
|
SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
solution_expression_name: Optional[str] = None,
|
|
|
|
solution_expression_type: Optional[type] = None,
|
|
|
|
allow_imports: bool = False,
|
|
|
|
allow_command_exec: bool = False,
|
|
|
|
):
|
|
|
|
"""Initialize a PALValidation instance.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
solution_expression_name (str): Name of the expected solution expression.
|
|
|
|
If passed, solution_expression_type must be passed as well.
|
|
|
|
solution_expression_type (str): AST type of the expected solution
|
|
|
|
expression. If passed, solution_expression_name must be passed as well.
|
|
|
|
Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
|
|
|
|
PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE.
|
|
|
|
allow_imports (bool): Allow import statements.
|
|
|
|
allow_command_exec (bool): Allow using known command execution functions.
|
|
|
|
"""
|
|
|
|
self.solution_expression_name = solution_expression_name
|
|
|
|
self.solution_expression_type = solution_expression_type
|
|
|
|
|
|
|
|
if solution_expression_name is not None:
|
|
|
|
if not isinstance(self.solution_expression_name, str):
|
|
|
|
raise ValueError(
|
|
|
|
f"Expected solution_expression_name to be str, "
|
|
|
|
f"instead found {type(self.solution_expression_name)}"
|
|
|
|
)
|
|
|
|
if solution_expression_type is not None:
|
|
|
|
if (
|
|
|
|
self.solution_expression_type
|
|
|
|
is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION
|
|
|
|
and self.solution_expression_type
|
|
|
|
is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE
|
|
|
|
):
|
|
|
|
raise ValueError(
|
|
|
|
f"Expected solution_expression_type to be one of "
|
|
|
|
f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION},"
|
|
|
|
f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE}),"
|
|
|
|
f"instead found {self.solution_expression_type}"
|
|
|
|
)
|
|
|
|
|
|
|
|
if solution_expression_name is not None and solution_expression_type is None:
|
|
|
|
raise TypeError(
|
|
|
|
"solution_expression_name "
|
|
|
|
"requires solution_expression_type to be passed as well"
|
|
|
|
)
|
|
|
|
if solution_expression_name is None and solution_expression_type is not None:
|
|
|
|
raise TypeError(
|
|
|
|
"solution_expression_type "
|
|
|
|
"requires solution_expression_name to be passed as well"
|
|
|
|
)
|
|
|
|
|
|
|
|
self.allow_imports = allow_imports
|
|
|
|
self.allow_command_exec = allow_command_exec
|
|
|
|
|
|
|
|
|
|
|
|
class PALChain(Chain):
|
|
|
|
"""Implements Program-Aided Language Models (PAL).
|
|
|
|
|
|
|
|
This class implements the Program-Aided Language Models (PAL) for generating code
|
|
|
|
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
|
|
|
|
(https://arxiv.org/pdf/2211.10435.pdf).
|
2023-08-29 17:51:56 +00:00
|
|
|
|
|
|
|
*Security note*: This class implements an AI technique that generates and evaluates
|
|
|
|
Python code, which can be dangerous and requires a specially sandboxed
|
|
|
|
environment to be safely used. While this class implements some basic guardrails
|
|
|
|
by limiting available locals/globals and by parsing and inspecting
|
|
|
|
the generated Python AST using `PALValidation`, those guardrails will not
|
|
|
|
deter sophisticated attackers and are not a replacement for a proper sandbox.
|
|
|
|
Do not use this class on untrusted inputs, with elevated permissions,
|
|
|
|
or without consulting your security team about proper sandboxing!
|
2023-07-21 20:32:39 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
llm_chain: LLMChain
|
|
|
|
stop: str = "\n\n"
|
|
|
|
"""Stop token to use when generating code."""
|
|
|
|
get_answer_expr: str = "print(solution())"
|
|
|
|
"""Expression to use to get the answer from the generated code."""
|
|
|
|
python_globals: Optional[Dict[str, Any]] = None
|
|
|
|
"""Python globals and locals to use when executing the generated code."""
|
|
|
|
python_locals: Optional[Dict[str, Any]] = None
|
|
|
|
"""Python globals and locals to use when executing the generated code."""
|
|
|
|
output_key: str = "result" #: :meta private:
|
|
|
|
return_intermediate_steps: bool = False
|
|
|
|
"""Whether to return intermediate steps in the generated code."""
|
|
|
|
code_validations: PALValidation = Field(default_factory=PALValidation)
|
|
|
|
"""Validations to perform on the generated code."""
|
|
|
|
timeout: Optional[int] = 10
|
|
|
|
"""Timeout in seconds for the generated code to execute."""
|
|
|
|
|
|
|
|
class Config:
|
|
|
|
"""Configuration for this pydantic object."""
|
|
|
|
|
|
|
|
extra = Extra.forbid
|
|
|
|
arbitrary_types_allowed = True
|
|
|
|
|
|
|
|
@property
|
|
|
|
def input_keys(self) -> List[str]:
|
|
|
|
"""Return the singular input key.
|
|
|
|
|
|
|
|
:meta private:
|
|
|
|
"""
|
2023-07-28 20:19:44 +00:00
|
|
|
return self.llm_chain.prompt.input_variables
|
2023-07-21 20:32:39 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def output_keys(self) -> List[str]:
|
|
|
|
"""Return the singular output key.
|
|
|
|
|
|
|
|
:meta private:
|
|
|
|
"""
|
|
|
|
if not self.return_intermediate_steps:
|
|
|
|
return [self.output_key]
|
|
|
|
else:
|
|
|
|
return [self.output_key, "intermediate_steps"]
|
|
|
|
|
|
|
|
def _call(
|
|
|
|
self,
|
|
|
|
inputs: Dict[str, Any],
|
|
|
|
run_manager: Optional[CallbackManagerForChainRun] = None,
|
|
|
|
) -> Dict[str, str]:
|
|
|
|
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
|
|
|
|
code = self.llm_chain.predict(
|
|
|
|
stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
|
|
|
|
)
|
|
|
|
_run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
|
|
|
|
PALChain.validate_code(code, self.code_validations)
|
|
|
|
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
|
|
|
|
res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout)
|
|
|
|
output = {self.output_key: res.strip()}
|
|
|
|
if self.return_intermediate_steps:
|
|
|
|
output["intermediate_steps"] = code
|
|
|
|
return output
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def validate_code(cls, code: str, code_validations: PALValidation) -> None:
|
|
|
|
try:
|
|
|
|
code_tree = ast.parse(code)
|
|
|
|
except (SyntaxError, UnicodeDecodeError):
|
|
|
|
raise ValueError(f"Generated code is not valid python code: {code}")
|
|
|
|
except TypeError:
|
|
|
|
raise ValueError(
|
|
|
|
f"Generated code is expected to be a string, "
|
|
|
|
f"instead found {type(code)}"
|
|
|
|
)
|
|
|
|
except OverflowError:
|
|
|
|
raise ValueError(
|
|
|
|
f"Generated code too long / complex to be parsed by ast: {code}"
|
|
|
|
)
|
|
|
|
|
|
|
|
found_solution_expr = False
|
|
|
|
if code_validations.solution_expression_name is None:
|
|
|
|
# Skip validation if no solution_expression_name was given
|
|
|
|
found_solution_expr = True
|
|
|
|
|
|
|
|
has_imports = False
|
|
|
|
top_level_nodes = list(ast.iter_child_nodes(code_tree))
|
|
|
|
for node in top_level_nodes:
|
|
|
|
if (
|
|
|
|
code_validations.solution_expression_name is not None
|
|
|
|
and code_validations.solution_expression_type is not None
|
|
|
|
):
|
|
|
|
# Check root nodes (like func def)
|
|
|
|
if (
|
|
|
|
isinstance(node, code_validations.solution_expression_type)
|
|
|
|
and hasattr(node, "name")
|
|
|
|
and node.name == code_validations.solution_expression_name
|
|
|
|
):
|
|
|
|
found_solution_expr = True
|
|
|
|
# Check assigned nodes (like answer variable)
|
|
|
|
if isinstance(node, ast.Assign):
|
|
|
|
for target_node in node.targets:
|
|
|
|
if (
|
|
|
|
isinstance(
|
|
|
|
target_node, code_validations.solution_expression_type
|
|
|
|
)
|
|
|
|
and hasattr(target_node, "id")
|
|
|
|
and target_node.id
|
|
|
|
== code_validations.solution_expression_name
|
|
|
|
):
|
|
|
|
found_solution_expr = True
|
|
|
|
if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom):
|
|
|
|
has_imports = True
|
|
|
|
|
|
|
|
if not found_solution_expr:
|
|
|
|
raise ValueError(
|
|
|
|
f"Generated code is missing the solution expression: "
|
|
|
|
f"{code_validations.solution_expression_name} of type: "
|
|
|
|
f"{code_validations.solution_expression_type}"
|
|
|
|
)
|
|
|
|
|
|
|
|
if not code_validations.allow_imports and has_imports:
|
|
|
|
raise ValueError(f"Generated code has disallowed imports: {code}")
|
|
|
|
|
|
|
|
if (
|
|
|
|
not code_validations.allow_command_exec
|
|
|
|
or not code_validations.allow_imports
|
|
|
|
):
|
|
|
|
for node in ast.walk(code_tree):
|
|
|
|
if (
|
|
|
|
(not code_validations.allow_command_exec)
|
|
|
|
and isinstance(node, ast.Call)
|
|
|
|
and (
|
|
|
|
(
|
|
|
|
hasattr(node.func, "id")
|
|
|
|
and node.func.id in COMMAND_EXECUTION_FUNCTIONS
|
|
|
|
)
|
|
|
|
or (
|
|
|
|
isinstance(node.func, ast.Attribute)
|
|
|
|
and node.func.attr in COMMAND_EXECUTION_FUNCTIONS
|
|
|
|
)
|
|
|
|
)
|
|
|
|
):
|
|
|
|
raise ValueError(
|
|
|
|
f"Found illegal command execution function "
|
|
|
|
f"{node.func.id} in code {code}"
|
|
|
|
)
|
|
|
|
|
|
|
|
if (not code_validations.allow_imports) and (
|
|
|
|
isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom)
|
|
|
|
):
|
|
|
|
raise ValueError(f"Generated code has disallowed imports: {code}")
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
|
|
|
|
"""Load PAL from math prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
llm (BaseLanguageModel): The language model to use for generating code.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
PALChain: An instance of PALChain.
|
|
|
|
"""
|
|
|
|
llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
|
|
|
|
code_validations = PALValidation(
|
|
|
|
solution_expression_name="solution",
|
|
|
|
solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
|
|
|
|
)
|
|
|
|
|
|
|
|
return cls(
|
|
|
|
llm_chain=llm_chain,
|
|
|
|
stop="\n\n",
|
|
|
|
get_answer_expr="print(solution())",
|
|
|
|
code_validations=code_validations,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_colored_object_prompt(
|
|
|
|
cls, llm: BaseLanguageModel, **kwargs: Any
|
|
|
|
) -> PALChain:
|
|
|
|
"""Load PAL from colored object prompt.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
llm (BaseLanguageModel): The language model to use for generating code.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
PALChain: An instance of PALChain.
|
|
|
|
"""
|
|
|
|
llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
|
|
|
|
code_validations = PALValidation(
|
|
|
|
solution_expression_name="answer",
|
|
|
|
solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE,
|
|
|
|
)
|
|
|
|
return cls(
|
|
|
|
llm_chain=llm_chain,
|
|
|
|
stop="\n\n\n",
|
|
|
|
get_answer_expr="print(answer)",
|
|
|
|
code_validations=code_validations,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _chain_type(self) -> str:
|
|
|
|
return "pal_chain"
|