langchain/docs/ecosystem/opensearch.md
Naveen Tatikonda 0118706fd6
Add Support for OpenSearch Vector database (#1191)
### Description
This PR adds a wrapper which adds support for the OpenSearch vector
database. Using opensearch-py client we are ingesting the embeddings of
given text into opensearch cluster using Bulk API. We can perform the
`similarity_search` on the index using the 3 popular searching methods
of OpenSearch k-NN plugin:

- `Approximate k-NN Search` use approximate nearest neighbor (ANN)
algorithms from the [nmslib](https://github.com/nmslib/nmslib),
[faiss](https://github.com/facebookresearch/faiss), and
[Lucene](https://lucene.apache.org/) libraries to power k-NN search.
- `Script Scoring` extends OpenSearch’s script scoring functionality to
execute a brute force, exact k-NN search.
- `Painless Scripting` adds the distance functions as painless
extensions that can be used in more complex combinations. Also, supports
brute force, exact k-NN search like Script Scoring.

### Issues Resolved 
https://github.com/hwchase17/langchain/issues/1054

---------

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-02-20 18:39:34 -08:00

22 lines
833 B
Markdown

# OpenSearch
This page covers how to use the OpenSearch ecosystem within LangChain.
It is broken into two parts: installation and setup, and then references to specific OpenSearch wrappers.
## Installation and Setup
- Install the Python package with `pip install opensearch-py`
## Wrappers
### VectorStore
There exists a wrapper around OpenSearch vector databases, allowing you to use it as a vectorstore
for semantic search using approximate vector search powered by lucene, nmslib and faiss engines
or using painless scripting and script scoring functions for bruteforce vector search.
To import this vectorstore:
```python
from langchain.vectorstores import OpenSearchVectorSearch
```
For a more detailed walkthrough of the OpenSearch wrapper, see [this notebook](../modules/indexes/vectorstore_examples/opensearch.ipynb)