langchain/docs/extras/integrations/callbacks/llmonitor.md
2023-08-28 19:26:33 +02:00

2.0 KiB

LLMonitor

LLMonitor is an open-source observability platform that provides cost tracking, user tracking and powerful agent tracing.

Setup

Create an account on llmonitor.com, create an App, and then copy the associated tracking id. Once you have it, set it as an environment variable by running:

export LLMONITOR_APP_ID="..."

If you'd prefer not to set an environment variable, you can pass the key directly when initializing the callback handler:

from langchain.callbacks import LLMonitorCallbackHandler

handler = LLMonitorCallbackHandler(app_id="...")

Usage with LLM/Chat models

from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import LLMonitorCallbackHandler

handler = LLMonitorCallbackHandler(app_id="...")

llm = OpenAI(
    callbacks=[handler],
)

chat = ChatOpenAI(
    callbacks=[handler],
    metadata={"userId": "123"},  # you can assign user ids to models in the metadata
)

Usage with agents

from langchain.agents import load_tools, initialize_agent, AgentType
from langchain.llms import OpenAI
from langchain.callbacks import LLMonitorCallbackHandler

handler = LLMonitorCallbackHandler(app_id="...")

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
agent.run(
    "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?",
    callbacks=[handler],
    metadata={
        "agentName": "Leo DiCaprio's girlfriend",  # you can assign a custom agent in the metadata
    },
)

Support

For any question or issue with integration you can reach out to the LLMonitor team on Discord or via email.