langchain/templates/rag-vectara/README.md
Ofer Mendelevitch ad502e8d50
community[minor]: Vectara Integration Update - Streaming, FCS, Chat, updates to documentation and example notebooks (#21334)
Thank you for contributing to LangChain!

**Description:** update to the Vectara / Langchain integration to
integrate new Vectara capabilities:
- Full RAG implemented as a Runnable with as_rag()
- Vectara chat supported with as_chat()
- Both support streaming response
- Updated documentation and example notebook to reflect all the changes
- Updated Vectara templates

**Twitter handle:** ofermend

**Add tests and docs**: no new tests or docs, but updated both existing
tests and existing docs
2024-06-04 12:57:28 -07:00

71 lines
1.8 KiB
Markdown

# rag-vectara
This template performs RAG with vectara.
## Environment Setup
Also, ensure the following environment variables are set:
* `VECTARA_CUSTOMER_ID`
* `VECTARA_CORPUS_ID`
* `VECTARA_API_KEY`
## Usage
To use this package, you should first have the LangChain CLI installed:
```shell
pip install -U langchain-cli
```
To create a new LangChain project and install this as the only package, you can do:
```shell
langchain app new my-app --package rag-vectara
```
If you want to add this to an existing project, you can just run:
```shell
langchain app add rag-vectara
```
And add the following code to your `server.py` file:
```python
from rag_vectara import chain as rag_vectara_chain
add_routes(app, rag_vectara_chain, path="/rag-vectara")
```
(Optional) Let's now configure LangSmith.
LangSmith will help us trace, monitor and debug LangChain applications.
You can sign up for LangSmith [here](https://smith.langchain.com/).
If you don't have access, you can skip this section
```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "vectara-demo"
```
If you are inside this directory, then you can spin up a LangServe instance directly by:
```shell
langchain serve
```
This will start the FastAPI app with a server is running locally at
[http://localhost:8000](http://localhost:8000)
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/rag-vectara/playground](http://127.0.0.1:8000/rag-vectara/playground)
We can access the template from code with:
```python
from langserve.client import RemoteRunnable
runnable = RemoteRunnable("http://localhost:8000/rag-vectara")
```