mirror of
https://github.com/hwchase17/langchain
synced 2024-10-29 17:07:25 +00:00
4be2f9d75a
seems linkchecker isn't catching them because it runs on generated html. at that point the links are already missing. the generation process seems to strip invalid references when they can't be re-written from md to html. I used https://github.com/tcort/markdown-link-check to check the doc source directly. There are a few false positives on localhost for development.
30 lines
1.2 KiB
Markdown
30 lines
1.2 KiB
Markdown
# Runhouse
|
|
|
|
This page covers how to use the [Runhouse](https://github.com/run-house/runhouse) ecosystem within LangChain.
|
|
It is broken into three parts: installation and setup, LLMs, and Embeddings.
|
|
|
|
## Installation and Setup
|
|
- Install the Python SDK with `pip install runhouse`
|
|
- If you'd like to use on-demand cluster, check your cloud credentials with `sky check`
|
|
|
|
## Self-hosted LLMs
|
|
For a basic self-hosted LLM, you can use the `SelfHostedHuggingFaceLLM` class. For more
|
|
custom LLMs, you can use the `SelfHostedPipeline` parent class.
|
|
|
|
```python
|
|
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
|
|
```
|
|
|
|
For a more detailed walkthrough of the Self-hosted LLMs, see [this notebook](../modules/models/llms/integrations/self_hosted_examples.ipynb)
|
|
|
|
## Self-hosted Embeddings
|
|
There are several ways to use self-hosted embeddings with LangChain via Runhouse.
|
|
|
|
For a basic self-hosted embedding from a Hugging Face Transformers model, you can use
|
|
the `SelfHostedEmbedding` class.
|
|
```python
|
|
from langchain.llms import SelfHostedPipeline, SelfHostedHuggingFaceLLM
|
|
```
|
|
|
|
For a more detailed walkthrough of the Self-hosted Embeddings, see [this notebook](../modules/models/text_embedding/examples/self-hosted.ipynb)
|