mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
10ff1fda8e
- Adds support for callback handlers in GPT4All models - Updates notebook and docs
1.7 KiB
1.7 KiB
GPT4All
This page covers how to use the GPT4All
wrapper within LangChain. The tutorial is divided into two parts: installation and setup, followed by usage with an example.
Installation and Setup
- Install the Python package with
pip install pyllamacpp
- Download a GPT4All model and place it in your desired directory
Usage
GPT4All
To use the GPT4All wrapper, you need to provide the path to the pre-trained model file and the model's configuration.
from langchain.llms import GPT4All
# Instantiate the model. Callbacks support token-wise streaming
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8)
# Generate text
response = model("Once upon a time, ")
You can also customize the generation parameters, such as n_predict, temp, top_p, top_k, and others.
To stream the model's predictions, add in a CallbackManager.
from langchain.llms import GPT4All
from langchain.callbacks.base import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# There are many CallbackHandlers supported, such as
# from langchain.callbacks.streamlit import StreamlitCallbackHandler
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
model = GPT4All(model="./models/gpt4all-model.bin", n_ctx=512, n_threads=8, callback_handler=callback_handler, verbose=True)
# Generate text. Tokens are streamed throught the callback manager.
model("Once upon a time, ")
Model File
You can find links to model file downloads in the pyllamacpp repository.
For a more detailed walkthrough of this, see this notebook