Go to file
Kate Silverstein 0bc4a9b3fc
community[minor]: Adds Llamafile as an LLM (#17431)
* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
2024-02-14 11:15:24 -08:00
.devcontainer Update README.md (#8570) 2023-11-12 22:07:49 -08:00
.github infra: rm @ from pr template (#17507) 2024-02-13 21:29:22 -08:00
cookbook docs: add use case for managing chat messages via Apache Kafka (#16771) 2024-02-13 08:09:15 -08:00
docker langchain[minor], community[minor], core[minor]: Async Cache support and AsyncRedisCache (#15817) 2024-02-07 22:06:09 -05:00
docs community[minor]: Adds Llamafile as an LLM (#17431) 2024-02-14 11:15:24 -08:00
libs community[minor]: Adds Llamafile as an LLM (#17431) 2024-02-14 11:15:24 -08:00
templates langchain[patch], templates[patch]: fix multi query retriever, web re… (#17434) 2024-02-12 22:52:07 -08:00
.gitattributes
.gitignore API Reference building script update (#13587) 2023-12-07 11:43:42 -08:00
.readthedocs.yaml infra: update rtd yaml (#17502) 2024-02-13 18:16:44 -08:00
CITATION.cff
LICENSE Library Licenses (#13300) 2023-11-28 17:34:27 -08:00
Makefile core[patch], langchain[patch]: fix required deps (#14373) 2023-12-07 14:24:58 -08:00
MIGRATE.md Update main readme (#13298) 2023-11-13 17:37:54 -08:00
poetry.lock infra: install integration deps for test linting (#16963) 2024-02-02 15:59:10 -08:00
poetry.toml
pyproject.toml infra: install integration deps for test linting (#16963) 2024-02-02 15:59:10 -08:00
README.md docs: Added LangGraph in framework parts of readme file (#17279) 2024-02-08 17:19:47 -08:00
SECURITY.md

🦜🔗 LangChain

Build context-aware reasoning applications

Release Notes CI Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS library? Check out LangChain.js.

To help you ship LangChain apps to production faster, check out LangSmith. LangSmith is a unified developer platform for building, testing, and monitoring LLM applications. Fill out this form to get off the waitlist or speak with our sales team.

Quick Install

With pip:

pip install langchain

With conda:

conda install langchain -c conda-forge

🤔 What is LangChain?

LangChain is a framework for developing applications powered by language models. It enables applications that:

  • Are context-aware: connect a language model to sources of context (prompt instructions, few shot examples, content to ground its response in, etc.)
  • Reason: rely on a language model to reason (about how to answer based on provided context, what actions to take, etc.)

This framework consists of several parts.

  • LangChain Libraries: The Python and JavaScript libraries. Contains interfaces and integrations for a myriad of components, a basic run time for combining these components into chains and agents, and off-the-shelf implementations of chains and agents.
  • LangChain Templates: A collection of easily deployable reference architectures for a wide variety of tasks.
  • LangServe: A library for deploying LangChain chains as a REST API.
  • LangSmith: A developer platform that lets you debug, test, evaluate, and monitor chains built on any LLM framework and seamlessly integrates with LangChain.
  • LangGraph: LangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain. It extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.

The LangChain libraries themselves are made up of several different packages.

  • langchain-core: Base abstractions and LangChain Expression Language.
  • langchain-community: Third party integrations.
  • langchain: Chains, agents, and retrieval strategies that make up an application's cognitive architecture.

Diagram outlining the hierarchical organization of the LangChain framework, displaying the interconnected parts across multiple layers.

🧱 What can you build with LangChain?

Retrieval augmented generation

💬 Analyzing structured data

🤖 Chatbots

And much more! Head to the Use cases section of the docs for more.

🚀 How does LangChain help?

The main value props of the LangChain libraries are:

  1. Components: composable tools and integrations for working with language models. Components are modular and easy-to-use, whether you are using the rest of the LangChain framework or not
  2. Off-the-shelf chains: built-in assemblages of components for accomplishing higher-level tasks

Off-the-shelf chains make it easy to get started. Components make it easy to customize existing chains and build new ones.

Components fall into the following modules:

📃 Model I/O:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

📚 Retrieval:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

📖 Documentation

Please see here for full documentation, which includes:

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

🌟 Contributors

langchain contributors