mirror of
https://github.com/hwchase17/langchain
synced 2024-11-11 19:11:02 +00:00
932c52c333
- added missed docstrings - formated docstrings to the consistent form
270 lines
8.8 KiB
Python
270 lines
8.8 KiB
Python
from __future__ import annotations
|
|
|
|
import logging
|
|
import uuid
|
|
from typing import Any, Iterable, List, Optional, Tuple
|
|
|
|
from langchain_core.documents import Document
|
|
from langchain_core.embeddings import Embeddings
|
|
from langchain_core.vectorstores import VectorStore
|
|
|
|
from langchain_community.vectorstores.utils import DistanceStrategy
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class KDBAI(VectorStore):
|
|
"""`KDB.AI` vector store.
|
|
|
|
See [https://kdb.ai](https://kdb.ai)
|
|
|
|
To use, you should have the `kdbai_client` python package installed.
|
|
|
|
Args:
|
|
table: kdbai_client.Table object to use as storage,
|
|
embedding: Any embedding function implementing
|
|
`langchain.embeddings.base.Embeddings` interface,
|
|
distance_strategy: One option from DistanceStrategy.EUCLIDEAN_DISTANCE,
|
|
DistanceStrategy.DOT_PRODUCT or DistanceStrategy.COSINE.
|
|
|
|
See the example [notebook](https://github.com/KxSystems/langchain/blob/KDB.AI/docs/docs/integrations/vectorstores/kdbai.ipynb).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
table: Any,
|
|
embedding: Embeddings,
|
|
distance_strategy: Optional[
|
|
DistanceStrategy
|
|
] = DistanceStrategy.EUCLIDEAN_DISTANCE,
|
|
):
|
|
try:
|
|
import kdbai_client # noqa
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import kdbai_client python package. "
|
|
"Please install it with `pip install kdbai_client`."
|
|
)
|
|
self._table = table
|
|
self._embedding = embedding
|
|
self.distance_strategy = distance_strategy
|
|
|
|
@property
|
|
def embeddings(self) -> Optional[Embeddings]:
|
|
if isinstance(self._embedding, Embeddings):
|
|
return self._embedding
|
|
return None
|
|
|
|
def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]:
|
|
if isinstance(self._embedding, Embeddings):
|
|
return self._embedding.embed_documents(list(texts))
|
|
return [self._embedding(t) for t in texts]
|
|
|
|
def _embed_query(self, text: str) -> List[float]:
|
|
if isinstance(self._embedding, Embeddings):
|
|
return self._embedding.embed_query(text)
|
|
return self._embedding(text)
|
|
|
|
def _insert(
|
|
self,
|
|
texts: List[str],
|
|
ids: Optional[List[str]],
|
|
metadata: Optional[Any] = None,
|
|
) -> None:
|
|
try:
|
|
import numpy as np
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import numpy python package. "
|
|
"Please install it with `pip install numpy`."
|
|
)
|
|
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import pandas python package. "
|
|
"Please install it with `pip install pandas`."
|
|
)
|
|
|
|
embeds = self._embedding.embed_documents(texts)
|
|
df = pd.DataFrame()
|
|
df["id"] = ids
|
|
df["text"] = [t.encode("utf-8") for t in texts]
|
|
df["embeddings"] = [np.array(e, dtype="float32") for e in embeds]
|
|
if metadata is not None:
|
|
df = pd.concat([df, metadata], axis=1)
|
|
self._table.insert(df, warn=False)
|
|
|
|
def add_texts(
|
|
self,
|
|
texts: Iterable[str],
|
|
metadatas: Optional[List[dict]] = None,
|
|
ids: Optional[List[str]] = None,
|
|
batch_size: int = 32,
|
|
**kwargs: Any,
|
|
) -> List[str]:
|
|
"""Run more texts through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
texts (Iterable[str]): Texts to add to the vectorstore.
|
|
metadatas (Optional[List[dict]]): List of metadata corresponding to each
|
|
chunk of text.
|
|
ids (Optional[List[str]]): List of IDs corresponding to each chunk of text.
|
|
batch_size (Optional[int]): Size of batch of chunks of text to insert at
|
|
once.
|
|
|
|
Returns:
|
|
List[str]: List of IDs of the added texts.
|
|
"""
|
|
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import pandas python package. "
|
|
"Please install it with `pip install pandas`."
|
|
)
|
|
|
|
texts = list(texts)
|
|
metadf: pd.DataFrame = None
|
|
if metadatas is not None:
|
|
if isinstance(metadatas, pd.DataFrame):
|
|
metadf = metadatas
|
|
else:
|
|
metadf = pd.DataFrame(metadatas)
|
|
out_ids: List[str] = []
|
|
nbatches = (len(texts) - 1) // batch_size + 1
|
|
for i in range(nbatches):
|
|
istart = i * batch_size
|
|
iend = (i + 1) * batch_size
|
|
batch = texts[istart:iend]
|
|
if ids:
|
|
batch_ids = ids[istart:iend]
|
|
else:
|
|
batch_ids = [str(uuid.uuid4()) for _ in range(len(batch))]
|
|
if metadf is not None:
|
|
batch_meta = metadf.iloc[istart:iend].reset_index(drop=True)
|
|
else:
|
|
batch_meta = None
|
|
self._insert(batch, batch_ids, batch_meta)
|
|
out_ids = out_ids + batch_ids
|
|
return out_ids
|
|
|
|
def add_documents(
|
|
self, documents: List[Document], batch_size: int = 32, **kwargs: Any
|
|
) -> List[str]:
|
|
"""Run more documents through the embeddings and add to the vectorstore.
|
|
|
|
Args:
|
|
documents (List[Document]: Documents to add to the vectorstore.
|
|
batch_size (Optional[int]): Size of batch of documents to insert at once.
|
|
|
|
Returns:
|
|
List[str]: List of IDs of the added texts.
|
|
"""
|
|
|
|
try:
|
|
import pandas as pd
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Could not import pandas python package. "
|
|
"Please install it with `pip install pandas`."
|
|
)
|
|
|
|
texts = [x.page_content for x in documents]
|
|
metadata = pd.DataFrame([x.metadata for x in documents])
|
|
return self.add_texts(texts, metadata=metadata, batch_size=batch_size)
|
|
|
|
def similarity_search_with_score(
|
|
self,
|
|
query: str,
|
|
k: int = 1,
|
|
filter: Optional[List] = [],
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Run similarity search with distance from a query string.
|
|
|
|
Args:
|
|
query (str): Query string.
|
|
k (Optional[int]): number of neighbors to retrieve.
|
|
filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html
|
|
|
|
Returns:
|
|
List[Document]: List of similar documents.
|
|
"""
|
|
return self.similarity_search_by_vector_with_score(
|
|
self._embed_query(query), k=k, filter=filter, **kwargs
|
|
)
|
|
|
|
def similarity_search_by_vector_with_score(
|
|
self,
|
|
embedding: List[float],
|
|
*,
|
|
k: int = 1,
|
|
filter: Optional[List] = [],
|
|
**kwargs: Any,
|
|
) -> List[Tuple[Document, float]]:
|
|
"""Return pinecone documents most similar to embedding, along with scores.
|
|
|
|
Args:
|
|
embedding (List[float]): query vector.
|
|
k (Optional[int]): number of neighbors to retrieve.
|
|
filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html
|
|
|
|
Returns:
|
|
List[Document]: List of similar documents.
|
|
"""
|
|
if "n" in kwargs:
|
|
k = kwargs.pop("n")
|
|
matches = self._table.search(vectors=[embedding], n=k, filter=filter, **kwargs)[
|
|
0
|
|
]
|
|
docs = []
|
|
for row in matches.to_dict(orient="records"):
|
|
text = row.pop("text")
|
|
score = row.pop("__nn_distance")
|
|
docs.append(
|
|
(
|
|
Document(
|
|
page_content=text,
|
|
metadata={k: v for k, v in row.items() if k != "text"},
|
|
),
|
|
score,
|
|
)
|
|
)
|
|
return docs
|
|
|
|
def similarity_search(
|
|
self,
|
|
query: str,
|
|
k: int = 1,
|
|
filter: Optional[List] = [],
|
|
**kwargs: Any,
|
|
) -> List[Document]:
|
|
"""Run similarity search from a query string.
|
|
|
|
Args:
|
|
query (str): Query string.
|
|
k (Optional[int]): number of neighbors to retrieve.
|
|
filter (Optional[List]): KDB.AI metadata filter clause: https://code.kx.com/kdbai/use/filter.html
|
|
|
|
Returns:
|
|
List[Document]: List of similar documents.
|
|
"""
|
|
docs_and_scores = self.similarity_search_with_score(
|
|
query, k=k, filter=filter, **kwargs
|
|
)
|
|
return [doc for doc, _ in docs_and_scores]
|
|
|
|
@classmethod
|
|
def from_texts(
|
|
cls: Any,
|
|
texts: List[str],
|
|
embedding: Embeddings,
|
|
metadatas: Optional[List[dict]] = None,
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""Not implemented."""
|
|
raise Exception("Not implemented.")
|