Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.
Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
Adjusted `deprecate` decorator to make sure decorated async functions
are still recognized as "coroutinefunction" by `inspect`.
Before change, functions such as `LLMChain.acall` which are decorated as
deprecated are not recognized as coroutine functions. After the change,
they are recognized:
```python
import inspect
from langchain import LLMChain
# Is false before change but true after.
inspect.iscoroutinefunction(LLMChain.acall)
```
- **Description:** I removed two queries to the database and left just
one whose results were formatted afterward into other type of schema
(avoided two calls to DB)
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** @supe_katarina
- **Description:** Some code sources have been moved from `langchain` to
`langchain_community` and so the documentation is not yet up-to-date.
This is specifically true for `StreamlitCallbackHandler` which returns a
`warning` message if not loaded from `langchain_community`.,
- **Issue:** I don't see a # issue that could address this problem but
perhaps #10744,
- **Dependencies:** Since it's a documentation change no dependencies
are required
- **Description:** update documentation on jaguar vector store:
Instruction for setting up jaguar server and usage of text_tag.
- **Issue:**
- **Dependencies:**
- **Twitter handle:**
---------
Co-authored-by: JY <jyjy@jaguardb>
Enable max inner product for approximate retrieval strategy. For exact
strategy we lack the necessary `maxInnerProduct` function in the
Painless scripting language, this is why we do not add it there.
Similarity docs:
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Joe McElroy <joseph.mcelroy@elastic.co>
Implement similarity function selector for ElasticsearchStore. The
scores coming back from Elasticsearch are already similarities (not
distances) and they are already normalized (see
[docs](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)).
Hence we leave the scores untouched and just forward them.
This fixes#11539.
However, in hybrid mode (when keyword search and vector search are
involved) Elasticsearch currently returns no scores. This PR adds an
error message around this fact. We need to think a bit more to come up
with a solution for this case.
This PR also corrects a small error in the Elasticsearch integration
test.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Issue:** This is a PR about #16340
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: yuhei.tsunoda <yuhei.tsunoda@brainpad.co.jp>
- **Description:** Updating documentation of IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM with using
`invoke` instead of `__call__`
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
The following warning information show when i use `run` and `__call__`
method:
```
LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
We need to update documentation for using `invoke` method
The following warning information will be displayed when i use
`llm(PROMPT)`:
```python
/Users/169/llama.cpp/venv/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
So I changed to standard usage.
**Description:**
In this PR, I am adding a `PolygonLastQuote` Tool, which can be used to
get the latest price quote for a given ticker / stock.
Additionally, I've added a Polygon Toolkit, which we can use to
encapsulate future tools that we build for Polygon.
**Twitter handle:** [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Used to be None, now is just the last chunk
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
fixed multi-query template for Vectara
added self-query template for Vectara
Also added prompt_name parameter to summarization
CC @efriis
**Twitter handle:** @ofermend
Add a version parameter while the method is in beta phase.
The idea is to make it possible to minimize making breaking changes for users while we're iterating on schema.
Once the API is stable we can assign a default version requirement.
- **Description:** Adds a text splitter based on
[Konlpy](https://konlpy.org/en/latest/#start) which is a Python package
for natural language processing (NLP) of the Korean language. (It is
like Spacy or NLTK for Korean)
- **Dependencies:** Konlpy would have to be installed before this
splitter is used,
- **Twitter handle:** @untilhamza
- **Description:** Fixes a few issues in NVIDIAcanonical RAG template's
README, and adds a notebook for the template
- **Dependencies:** Adds the pypdf dependency which is needed for
ingestion, and updates the lock file
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Add privileged version for issue creation.
This adds a version of issue creation which is unstructured by design to
make it easier for maintainers to create issues.
Maintainers are expected to write / describe issues clearly.
- **Description:** Some text-generation models on huggingface repeat the
prompt in their generated response, but not all do! The tests use "gpt2"
which DOES repeat the prompt and as such, the HuggingFaceHub class is
hardcoded to remove the first few characters of the response (to match
the len(prompt)). However, if you are using a model (such as the very
popular "meta-llama/Llama-2-7b-chat-hf") that DOES NOT repeat the prompt
in it's generated text, then the beginning of the generated text will be
cut off. This code change fixes that bug by first checking whether the
prompt is repeated in the generated response and removing it
conditionally.
- **Issue:** #16232
- **Dependencies:** N/A
- **Twitter handle:** N/A