mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
core[patch], openai[patch]: Chat openai stream logprobs (#16218)
This commit is contained in:
parent
6f7a414955
commit
84bf5787a7
@ -5,6 +5,7 @@ from typing import Any, Dict, List, Literal
|
||||
from langchain_core.messages import BaseMessage, BaseMessageChunk
|
||||
from langchain_core.outputs.generation import Generation
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
from langchain_core.utils._merge import merge_dicts
|
||||
|
||||
|
||||
class ChatGeneration(Generation):
|
||||
@ -53,14 +54,13 @@ class ChatGenerationChunk(ChatGeneration):
|
||||
|
||||
def __add__(self, other: ChatGenerationChunk) -> ChatGenerationChunk:
|
||||
if isinstance(other, ChatGenerationChunk):
|
||||
generation_info = (
|
||||
{**(self.generation_info or {}), **(other.generation_info or {})}
|
||||
if self.generation_info is not None or other.generation_info is not None
|
||||
else None
|
||||
generation_info = merge_dicts(
|
||||
self.generation_info or {},
|
||||
other.generation_info or {},
|
||||
)
|
||||
return ChatGenerationChunk(
|
||||
message=self.message + other.message,
|
||||
generation_info=generation_info,
|
||||
generation_info=generation_info or None,
|
||||
)
|
||||
else:
|
||||
raise TypeError(
|
||||
|
@ -3,6 +3,7 @@ from __future__ import annotations
|
||||
from typing import Any, Dict, List, Literal, Optional
|
||||
|
||||
from langchain_core.load import Serializable
|
||||
from langchain_core.utils._merge import merge_dicts
|
||||
|
||||
|
||||
class Generation(Serializable):
|
||||
@ -40,14 +41,13 @@ class GenerationChunk(Generation):
|
||||
|
||||
def __add__(self, other: GenerationChunk) -> GenerationChunk:
|
||||
if isinstance(other, GenerationChunk):
|
||||
generation_info = (
|
||||
{**(self.generation_info or {}), **(other.generation_info or {})}
|
||||
if self.generation_info is not None or other.generation_info is not None
|
||||
else None
|
||||
generation_info = merge_dicts(
|
||||
self.generation_info or {},
|
||||
other.generation_info or {},
|
||||
)
|
||||
return GenerationChunk(
|
||||
text=self.text + other.text,
|
||||
generation_info=generation_info,
|
||||
generation_info=generation_info or None,
|
||||
)
|
||||
else:
|
||||
raise TypeError(
|
||||
|
44
libs/core/langchain_core/utils/_merge.py
Normal file
44
libs/core/langchain_core/utils/_merge.py
Normal file
@ -0,0 +1,44 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
|
||||
def merge_dicts(left: Dict[str, Any], right: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Merge two dicts, handling specific scenarios where a key exists in both
|
||||
dictionaries but has a value of None in 'left'. In such cases, the method uses the
|
||||
value from 'right' for that key in the merged dictionary.
|
||||
|
||||
Example:
|
||||
If left = {"function_call": {"arguments": None}} and
|
||||
right = {"function_call": {"arguments": "{\n"}}
|
||||
then, after merging, for the key "function_call",
|
||||
the value from 'right' is used,
|
||||
resulting in merged = {"function_call": {"arguments": "{\n"}}.
|
||||
"""
|
||||
merged = left.copy()
|
||||
for k, v in right.items():
|
||||
if k not in merged:
|
||||
merged[k] = v
|
||||
elif merged[k] is None and v:
|
||||
merged[k] = v
|
||||
elif v is None:
|
||||
continue
|
||||
elif merged[k] == v:
|
||||
continue
|
||||
elif type(merged[k]) != type(v):
|
||||
raise TypeError(
|
||||
f'additional_kwargs["{k}"] already exists in this message,'
|
||||
" but with a different type."
|
||||
)
|
||||
elif isinstance(merged[k], str):
|
||||
merged[k] += v
|
||||
elif isinstance(merged[k], dict):
|
||||
merged[k] = merge_dicts(merged[k], v)
|
||||
elif isinstance(merged[k], list):
|
||||
merged[k] = merged[k] + v
|
||||
else:
|
||||
raise TypeError(
|
||||
f"Additional kwargs key {k} already exists in left dict and value has "
|
||||
f"unsupported type {type(merged[k])}."
|
||||
)
|
||||
return merged
|
@ -404,15 +404,19 @@ class ChatOpenAI(BaseChatModel):
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
choice["delta"], default_chunk_class
|
||||
)
|
||||
finish_reason = choice.get("finish_reason")
|
||||
generation_info = (
|
||||
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
||||
)
|
||||
generation_info = {}
|
||||
if finish_reason := choice.get("finish_reason"):
|
||||
generation_info["finish_reason"] = finish_reason
|
||||
logprobs = choice.get("logprobs")
|
||||
if logprobs:
|
||||
generation_info["logprobs"] = logprobs
|
||||
default_chunk_class = chunk.__class__
|
||||
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info or None
|
||||
)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
@ -492,15 +496,21 @@ class ChatOpenAI(BaseChatModel):
|
||||
chunk = _convert_delta_to_message_chunk(
|
||||
choice["delta"], default_chunk_class
|
||||
)
|
||||
finish_reason = choice.get("finish_reason")
|
||||
generation_info = (
|
||||
dict(finish_reason=finish_reason) if finish_reason is not None else None
|
||||
)
|
||||
generation_info = {}
|
||||
if finish_reason := choice.get("finish_reason"):
|
||||
generation_info["finish_reason"] = finish_reason
|
||||
logprobs = choice.get("logprobs")
|
||||
if logprobs:
|
||||
generation_info["logprobs"] = logprobs
|
||||
default_chunk_class = chunk.__class__
|
||||
chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info)
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info or None
|
||||
)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk)
|
||||
await run_manager.on_llm_new_token(
|
||||
token=chunk.text, chunk=chunk, logprobs=logprobs
|
||||
)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
|
@ -391,3 +391,37 @@ def test_invoke() -> None:
|
||||
|
||||
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
||||
assert isinstance(result.content, str)
|
||||
|
||||
|
||||
def test_logprobs() -> None:
|
||||
llm = ChatOpenAI()
|
||||
result = llm.generate([[HumanMessage(content="I'm PickleRick")]], logprobs=True)
|
||||
assert result.generations[0][0].generation_info
|
||||
assert "content" in result.generations[0][0].generation_info["logprobs"]
|
||||
|
||||
|
||||
async def test_async_logprobs() -> None:
|
||||
llm = ChatOpenAI()
|
||||
result = await llm.agenerate(
|
||||
[[HumanMessage(content="I'm PickleRick")]], logprobs=True
|
||||
)
|
||||
assert result.generations[0][0].generation_info
|
||||
assert "content" in result.generations[0][0].generation_info["logprobs"]
|
||||
|
||||
|
||||
def test_logprobs_streaming() -> None:
|
||||
llm = ChatOpenAI()
|
||||
result = llm.generate(
|
||||
[[HumanMessage(content="I'm PickleRick")]], logprobs=True, stream=True
|
||||
)
|
||||
assert result.generations[0][0].generation_info
|
||||
assert "content" in result.generations[0][0].generation_info["logprobs"]
|
||||
|
||||
|
||||
async def test_async_logprobs_streaming() -> None:
|
||||
llm = ChatOpenAI()
|
||||
result = await llm.agenerate(
|
||||
[[HumanMessage(content="I'm PickleRick")]], logprobs=True, stream=True
|
||||
)
|
||||
assert result.generations[0][0].generation_info
|
||||
assert "content" in result.generations[0][0].generation_info["logprobs"]
|
||||
|
Loading…
Reference in New Issue
Block a user