Commit Graph

79 Commits

Author SHA1 Message Date
shahrin014
f51e6a35ba
community[patch]: OllamaEmbeddings - Pass headers to post request (#16880)
## Feature
- Set additional headers in constructor
- Headers will be sent in post request

This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.

## Tests
- Test if header is passed
- Test if header is not passed

Similar to https://github.com/langchain-ai/langchain/pull/15881

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 18:44:52 +00:00
高璟琦
ec7a59c96c
community[minor]: Add solar embedding (#19761)
Solar is a large language model developed by
[Upstage](https://upstage.ai/). It's a powerful and purpose-trained LLM.
You can visit the embedding service provided by Solar within this pr.

You may get **SOLAR_API_KEY** from
https://console.upstage.ai/services/embedding
You can refer to more details about accepted llm integration at
https://python.langchain.com/docs/integrations/llms/solar.
2024-03-29 09:36:05 -07:00
Ethan Yang
7164015135
community[minor]: Add Openvino embedding support (#19632)
This PR is used to support both HF and BGE embeddings with openvino

---------

Co-authored-by: Alexander Kozlov <alexander.kozlov@intel.com>
2024-03-29 01:34:51 -07:00
T Cramer
540ebf35a9
community[patch]: Add explicit error message to Bedrock error output. (#17328)
- **Description:** Propagate Bedrock errors into Langchain explicitly.
Use-case: unset region error is hidden behind 'Could not load
credentials...' message
- **Issue:**
[17654](https://github.com/langchain-ai/langchain/issues/17654)
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 03:07:33 +00:00
kYLe
124ab79c23
community[minor]: Add Anyscale embedding support (#17605)
**Description:** Add embedding model support for Anyscale Endpoint
**Dependencies:** openai

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:53:53 +00:00
Lance Martin
12843f292f
community[patch]: llama cpp embeddings reset default n_batch (#17594)
When testing Nomic embeddings --
```
from langchain_community.embeddings import LlamaCppEmbeddings
embd_model_path = "/Users/rlm/Desktop/Code/llama.cpp/models/nomic-embd/nomic-embed-text-v1.Q4_K_S.gguf"
embd_lc = LlamaCppEmbeddings(model_path=embd_model_path)
embedding_lc = embd_lc.embed_query(query)
```

We were seeing this error for strings > a certain size -- 
```
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/llama.py:827, in Llama.embed(self, input, normalize, truncate, return_count)
    824     s_sizes = []
    826 # add to batch
--> 827 self._batch.add_sequence(tokens, len(s_sizes), False)
    828 t_batch += n_tokens
    829 s_sizes.append(n_tokens)

File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/_internals.py:542, in _LlamaBatch.add_sequence(self, batch, seq_id, logits_all)
    540 self.batch.token[j] = batch[i]
    541 self.batch.pos[j] = i
--> 542 self.batch.seq_id[j][0] = seq_id
    543 self.batch.n_seq_id[j] = 1
    544 self.batch.logits[j] = logits_all

ValueError: NULL pointer access
```

The default `n_batch` of llama-cpp-python's Llama is `512` but we were
explicitly setting it to `8`.
 
These need to be set to equal for embedding models. 
* The embedding.cpp example has an assertion to make sure these are
always equal.
* Apparently this is not being done properly in llama-cpp-python.

With `n_batch` set to 8, if more than 8 tokens are passed the batch runs
out of space and it crashes.

This also explains why the CPU compute buffer size was small:

raw client with default `n_batch=512`
```
llama_new_context_with_model:        CPU input buffer size   =     3.51 MiB
llama_new_context_with_model:        CPU compute buffer size =    21.00 MiB
```
langchain with `n_batch=8`
```
llama_new_context_with_model:        CPU input buffer size   =     0.04 MiB
llama_new_context_with_model:        CPU compute buffer size =     0.33 MiB
```

We can work around this by passing `n_batch=512`, but this will not be
obvious to some users:
```
    embedding = LlamaCppEmbeddings(model_path=embd_model_path,
                                   n_batch=512)
```

From discussion w/ @cebtenzzre. Related:

https://github.com/abetlen/llama-cpp-python/issues/1189

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 00:47:22 +00:00
hulitaitai
dc2c9dd4d7
Update text2vec.py (#19657)
Add that URL of the embedding tool "text2vec".
Fix minor mistakes in the doc-string.
2024-03-27 13:13:30 -04:00
yuwenzho
3a7d2cf443
community[minor]: Add ITREX optimized Embeddings (#18474)
Introduction
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit designed to accelerate GenAI/LLM everywhere
with the optimal performance of Transformer-based models on various
Intel platforms

Description

adding ITREX runtime embeddings using intel-extension-for-transformers.
added mdx documentation and example notebooks
added embedding import testing.

---------

Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-27 07:22:06 +00:00
Tom Aarsen
e0a1278d2b
docs: HFEmbeddings: Add more information to model_kwargs/encode_kwargs (#19594)
- **Description:** Be more explicit with the `model_kwargs` and
`encode_kwargs` for `HuggingFaceEmbeddings`.
    - **Issue:** -
    - **Dependencies:** -

I received some reports by my users that they didn't realise that you
could change the default `batch_size` with `HuggingFaceEmbeddings`,
which may be attributed to how the `model_kwargs` and `encode_kwargs`
don't give much information about what you can specify.

I've added some parameter names & links to the Sentence Transformers
documentation to help clear it up. Let me know if you'd rather have
Markdown/Sphinx-style hyperlinks rather than a "bare URL".

- Tom Aarsen
2024-03-26 12:46:04 -04:00
hulitaitai
d7c14cb6f9
community[minor]: Add embeddings integration for text2vec (#19267)
Create a Class which allows to use the "text2vec" open source embedding
model.

It should install the model by running 'pip install -U text2vec'.
Example to call the model through LangChain:

from langchain_community.embeddings.text2vec import Text2vecEmbeddings

            embedding = Text2vecEmbeddings()
            bookend.embed_documents([
                "This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
            ])
            bookend.embed_query(
                "It can be used for text matching or semantic search."
            )

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-03-26 11:06:58 -04:00
Anindyadeep
b2a11ce686
community[minor]: Prem AI langchain integration (#19113)
### Prem SDK integration in LangChain

This PR adds the integration with [PremAI's](https://www.premai.io/)
prem-sdk with langchain. User can now access to deployed models
(llms/embeddings) and use it with langchain's ecosystem. This PR adds
the following:

### This PR adds the following:

- [x]  Add chat support
- [X]  Adding embedding support
- [X]  writing integration tests
    - [X]  writing tests for chat 
    - [X]  writing tests for embedding
- [X]  writing unit tests
    - [X]  writing tests for chat 
    - [X]  writing tests for embedding
- [X]  Adding documentation
    - [X]  writing documentation for chat
    - [X]  writing documentation for embedding
- [X] run `make test`
- [X] run `make lint`, `make lint_diff` 
- [X]  Final checks (spell check, lint, format and overall testing)

---------

Co-authored-by: Anindyadeep Sannigrahi <anindyadeepsannigrahi@Anindyadeeps-MacBook-Pro.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 01:37:19 +00:00
Dmitry Tyumentsev
08b769d539
community[patch]: YandexGPT Use recent yandexcloud sdk version (#19341)
Fixed inability to work with [yandexcloud
SDK](https://pypi.org/project/yandexcloud/) version higher 0.265.0
2024-03-25 17:05:57 -07:00
Mikelarg
dac2e0165a
community[minor]: Added GigaChat Embeddings support + updated previous GigaChat integration (#19516)
- **Description:** Added integration with
[GigaChat](https://developers.sber.ru/portal/products/gigachat)
embeddings. Also added support for extra fields in GigaChat LLM and
fixed docs.
2024-03-25 16:08:37 -07:00
billytrend-cohere
63343b4987
cohere[patch]: add cohere as a partner package (#19049)
Description: adds support for langchain_cohere

---------

Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-25 20:23:47 +00:00
Sergey Kozlov
1a55e950aa
community[patch]: support fastembed v1 and v2 (#19125)
**Description:**
#18040 forces `fastembed>2.0`, and this causes dependency conflicts with
the new `unstructured` package (different `onnxruntime`). There may be
other dependency conflicts.. The only way to use
`langchain-community>=0.0.28` is rollback to `unstructured 0.10.X`. But
new `unstructured` contains many fixes.

This PR allows to use both `fastembed` `v1` and `v2`.

How to reproduce:

`pyproject.toml`:
```toml
[tool.poetry]
name = "depstest"
version = "0.0.0"
description = "test"
authors = ["<dev@example.org>"]

[tool.poetry.dependencies]
python = ">=3.10,<3.12"
langchain-community = "^0.0.28"
fastembed = "^0.2.0"
unstructured = {extras = ["pdf"], version = "^0.12"}
```

```bash
$ poetry lock
```

Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
2024-03-15 18:33:51 -07:00
case-k
ebc4a64f9e
docs: fix databricks document url (#19096)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-15 22:25:11 +00:00
Guangdong Liu
cced3eb9bc
community[patch]: Fix sparkllm embeddings api bug. (#19122)
- **Description:** Fix sparkllm embeddings api bug.
@baskaryan PTAL
2024-03-15 15:08:49 -07:00
Erick Friis
7ce81eb6f4
voyageai[patch]: init package (#19098)
Co-authored-by: fodizoltan <zoltan@conway.expert>
Co-authored-by: Yujie Qian <thomasq0809@gmail.com>
Co-authored-by: fzowl <160063452+fzowl@users.noreply.github.com>
2024-03-15 00:56:10 +00:00
billytrend-cohere
7253b816cc
community: Add support for cohere SDK v5 (keeps v4 backwards compatibility) (#19084)
- **Description:** Add support for cohere SDK v5 (keeps v4 backwards
compatibility)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-03-14 15:53:24 -07:00
Leonid Ganeline
9c8523b529
community[patch]: flattening imports 3 (#18939)
@eyurtsev
2024-03-12 15:18:54 -07:00
wt3639
5b5b37a999
community[patch]: Add embedding instruction to HuggingFaceBgeEmbeddings (#18017)
- **Description:** Add embedding instruction to
HuggingFaceBgeEmbeddings, so that it can be compatible with nomic and
other models that need embedding instruction.

---------

Co-authored-by: Tao Wu <tao.wu@rwth-aachen.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-08 16:39:29 -08:00
Phat Vo
3ecb903d49
community[patch] : Tidy up and update Clarifai SDK functions (#18314)
Description :
* Tidy up, add missing docstring and fix unused params
* Enable using session token
2024-03-07 19:47:44 -08:00
Max Jakob
cca0167917
elasticsearch[patch], community[patch]: update references, deprecate community classes (#18506)
Follow up on https://github.com/langchain-ai/langchain/pull/17467.

- Update all references to the Elasticsearch classes to use the partners
package.
- Deprecate community classes.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-06 15:09:12 -08:00
Kate Silverstein
b7c71e2e07
community[minor]: llamafile embeddings support (#17976)
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
2024-03-01 13:49:18 -08:00
Yujie Qian
cbb65741a7
community[patch]: Voyage AI updates default model and batch size (#17655)
- **Description:** update the default model and batch size in
VoyageEmbeddings
    - **Issue:** N/A
    - **Dependencies:** N/A
    - **Twitter handle:** N/A

---------

Co-authored-by: fodizoltan <zoltan@conway.expert>
2024-03-01 10:22:24 -08:00
Anush
9d663f31fa
community[patch]: FastEmbed to latest (#18040)
## Description

Updates the `langchain_community.embeddings.fastembed` provider as per
the recent updates to [`FastEmbed`](https://github.com/qdrant/fastembed)
library.
2024-02-29 21:15:51 -08:00
Erick Friis
eefb49680f
multiple[patch]: fix deprecation versions (#18349) 2024-02-29 16:58:33 -08:00
Dan Stambler
69344a0661
community: Add Laser Embedding Integration (#18111)
- **Description:** Added Integration with Meta AI's LASER
Language-Agnostic SEntence Representations embedding library, which
supports multilingual embedding for any of the languages listed here:
https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200,
including several low resource languages
- **Dependencies:** laser_encoders
2024-02-26 12:16:37 -08:00
Michael Feil
242981b8f0
community[minor]: infinity embedding local option (#17671)
**drop-in-replacement for sentence-transformers
inference.**

https://github.com/langchain-ai/langchain/discussions/17670

tldr from the discussion above -> around a 4x-22x speedup over using
SentenceTransformers / huggingface embeddings. For more info:
https://github.com/michaelfeil/infinity (pure-python dependency)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-21 16:33:13 -08:00
Guangdong Liu
3ba1cb8650
community[minor]: Add SparkLLM Text Embedding Model and SparkLLM introduction (#17573) 2024-02-20 11:22:27 -08:00
Bagatur
a058c8812d
community[patch]: add VoyageEmbeddings truncation (#17638) 2024-02-18 10:21:21 -07:00
Moshe Berchansky
20a56fe0a2
community[minor]: Add QuantizedEmbedders (#17391)
**Description:** 
* adding Quantized embedders using optimum-intel and
intel-extension-for-pytorch.
* added mdx documentation and example notebooks 
* added embedding import testing.

**Dependencies:** 
optimum = {extras = ["neural-compressor"], version = "^1.14.0", optional
= true}
intel_extension_for_pytorch = {version = "^2.2.0", optional = true}

Dependencies have been added to pyproject.toml for the community lib.  

**Twitter handle:** @peter_izsak

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-15 11:01:24 -08:00
nvpranak
91bcc9c5c9
community[minor]: Nemo embeddings(#16206)
This PR is adding support for NVIDIA NeMo embeddings issue #16095.

---------

Co-authored-by: Praveen Nakshatrala <pnakshatrala@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 13:25:42 -08:00
Abhishek Jain
37e1275f9e
community[patch]: Fixed the 'aembed' method of 'CohereEmbeddings'. (#16497)
**Description:**
- The existing code was trying to find a `.embeddings` property on the
`Coroutine` returned by calling `cohere.async_client.embed`.
- Instead, the `.embeddings` property is present on the value returned
by the `Coroutine`.
- Also, it seems that the original cohere client expects a value of
`max_retries` to not be `None`. Hence, setting the default value of
`max_retries` to `3`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 21:57:27 -08:00
Michael Feil
e1cfd0f3e7
community[patch]: infinity embeddings update incorrect default url (#16759)
The default url has always been incorrect (7797 instead 7997). Here is a
update to the correct url.
2024-02-12 20:05:08 -08:00
Erick Friis
3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
Leonid Ganeline
932c52c333
community[patch]: docstrings (#16810)
- added missed docstrings
- formated docstrings to the consistent form
2024-02-09 12:48:57 -08:00
Bassem Yacoube
4e3ed7f043
community[patch]: octoai embeddings bug fix (#17216)
fixes a bug in octoa_embeddings provider
2024-02-07 22:25:52 -05:00
Tyler Titsworth
304f3f5fc1
community[patch]: Add Progress bar to HuggingFaceEmbeddings (#16758)
- **Description:** Adds a function parameter to HuggingFaceEmbeddings
called `show_progress` that enables a `tqdm` progress bar if enabled.
Does not function if `multi_process = True`.
  - **Issue:** n/a
  - **Dependencies:** n/a
2024-02-05 14:33:34 -08:00
Harrison Chase
4eda647fdd
infra: add -p to mkdir in lint steps (#17013)
Previously, if this did not find a mypy cache then it wouldnt run

this makes it always run

adding mypy ignore comments with existing uncaught issues to unblock other prs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-05 11:22:06 -08:00
Marina Pliusnina
a1ce7ab672
adding parameter for changing the language in SpacyEmbeddings (#15743)
Description: Added the parameter for a possibility to change a language
model in SpacyEmbeddings. The default value is still the same:
"en_core_web_sm", so it shouldn't affect a code which previously did not
specify this parameter, but it is not hard-coded anymore and easy to
change in case you want to use it with other languages or models.

Issue: At Barcelona Supercomputing Center in Aina project
(https://github.com/projecte-aina), a project for Catalan Language
Models and Resources, we would like to use Langchain for one of our
current projects and we would like to comment that Langchain, while
being a very powerful and useful open-source tool, is pretty much
focused on English language. We would like to contribute to make it a
bit more adaptable for using with other languages.

Dependencies: This change requires the Spacy library and a language
model, specified in the model parameter.

Tag maintainer: @dev2049

Twitter handle: @projecte_aina

---------

Co-authored-by: Marina Pliusnina <marina.pliusnina@bsc.es>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-29 20:30:34 -08:00
Bassem Yacoube
85e93e05ed
community[minor]: Update OctoAI LLM, Embedding and documentation (#16710)
This PR includes updates for OctoAI integrations:
- The LLM class was updated to fix a bug that occurs with multiple
sequential calls
- The Embedding class was updated to support the new GTE-Large endpoint
released on OctoAI lately
- The documentation jupyter notebook was updated to reflect using the
new LLM sdk
Thank you!
2024-01-29 13:57:17 -08:00
yin1991
a936472512
docs: Update documentation to use 'model_id' rather than 'model_name' to match actual API (#16615)
- **Description:** Replace 'model_name' with 'model_id' for accuracy 
- **Issue:**
[link-to-issue](https://github.com/langchain-ai/langchain/issues/16577)
  - **Dependencies:** 
  - **Twitter handle:**
2024-01-26 15:01:12 -08:00
baichuan-assistant
70ff54eace
community[minor]: Add Baichuan Text Embedding Model and Baichuan Inc introduction (#16568)
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.

Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-26 12:57:26 -08:00
Dmitry Tyumentsev
e86e66bad7
community[patch]: YandexGPT models - add sleep_interval (#16566)
Added sleep between requests to prevent errors associated with
simultaneous requests.
2024-01-25 09:07:19 -08:00
Rave Harpaz
c4e9c9ca29
community[minor]: Add OCI Generative AI integration (#16548)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
  - **Issue:** None,
  - **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
 
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 18:23:50 -08:00
Unai Garay Maestre
fdbfa6b2c8
Adds progress bar to VertexAIEmbeddings (#14542)
- **Description:** Adds progress bar to VertexAIEmbeddings 
- **Issue:** related issue
https://github.com/langchain-ai/langchain/issues/13637

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>

---------

Signed-off-by: ugm2 <unaigaraymaestre@gmail.com>
2024-01-24 11:16:16 -07:00
chyroc
61da2ff24c
community[patch]: use SecretStr for yandex model secrets (#15463) 2024-01-23 20:08:53 -08:00
Davide Menini
9ce177580a
community: normalize bedrock embeddings (#15103)
In this PR I added a post-processing function to normalize the
embeddings. This happens only if the new `normalize` flag is `True`.

---------

Co-authored-by: taamedag <Davide.Menini@swisscom.com>
2024-01-23 17:05:24 -08:00
Eli Lucherini
6b2a57161a
community[patch]: allow additional kwargs in MlflowEmbeddings for compatibility with Cohere API (#15242)
- **Description:** add support for kwargs in`MlflowEmbeddings`
`embed_document()` and `embed_query()` so that all the arguments
required by Cohere API (and others?) can be passed down to the server.
  - **Issue:** #15234 
- **Dependencies:** MLflow with MLflow Deployments (`pip install
mlflow[genai]`)

**Tests**
Now this code [adapted from the
docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example)
for the Cohere API works locally.

```python
"""
Setup
-----
export COHERE_API_KEY=...
mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml

Run
---
python /path/to/this/file.py
"""
embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
```

Output
```
[0.060455322, 0.028793335, -0.025848389]
[0.031707764, 0.021057129, -0.009361267]
```
2024-01-22 11:38:11 -08:00