- **Description:** This change allows the `_fetch` method in the
`WebBaseLoader` class to utilize cookies from an existing
`requests.Session`. It ensures that when the `fetch` method is used, any
cookies in the provided session are included in the request. This
enhancement maintains compatibility with existing functionality while
extending the utility of the `fetch` method for scenarios where cookie
persistence is necessary.
- **Issue:** Not applicable (new feature),
- **Dependencies:** Requires `aiohttp` and `requests` libraries (no new
dependencies introduced),
- **Twitter handle:** N/A
Co-authored-by: Joao Almeida <joao.almeida@mercedes-benz.io>
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
- **Description**: YoutubeLoader right now returns one document that
contains the entire transcript. I think it would be useful to add an
option to return multiple documents, where each document would contain
one line of transcript with the start time and duration in the metadata.
For example,
[AssemblyAIAudioTranscriptLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/assemblyai.py)
is implemented in a similar way, it allows you to choose between the
format to use for the document loader.
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.
Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.
- **Dependencies**: No dependencies are added as we call a rest API.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
… converters
One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
community:
- **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
- Add tests and Jupyter notebook.
- **Issue:** None
- **Dependencies:** Relies on existing ChatLiteLLM integration
- **Twitter handle:** @bburgin_0
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
- **Issue:** None,
- **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.
@baskaryan @hwchase17
```python
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
guardrails={"id": " <guardrail_id>",
"version": "<guardrail_version>",
"trace": True}, callbacks=[BedrockAsyncCallbackHandler()])
class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
"""Async callback handler that can be used to handle callbacks from langchain."""
async def on_llm_error(
self,
error: BaseException,
**kwargs: Any,
) -> Any:
reason = kwargs.get("reason")
if reason == "GUARDRAIL_INTERVENED":
# kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
print(f"""Guardrails: {kwargs}""")
# streaming
llm = Bedrock(model_id="<model_id>", client=bedrock,
model_kwargs={},
streaming=True,
guardrails={"id": "<guardrail_id>",
"version": "<guardrail_version>"})
```
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).
- **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
- **Twitter handle:** @sapopensource
Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`
Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`
Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`
Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
Access credentials for execution of the integration tests can be
provided to the maintainers.
---------
Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
Handle unsupported languages in same way as when none is provided
**Issue:**
The following line will throw a KeyError if the language is not
supported.
```python
self.Segmenter = LANGUAGE_SEGMENTERS[language]
```
E.g. when using `Language.CPP` we would get `KeyError: <Language.CPP:
'cpp'>`
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** added the conversational task to hugginFace endpoint
in order to use models designed for chatbot programming.
- **Dependencies:** None
---------
Co-authored-by: Alessio Serra (ext.) <alessio.serra@partner.bmw.de>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
- **Issue:** Fixed#15607,
- **Dependencies:** NA
- **Twitter handle:** NA
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
- **Dependencies:** websocket-client ^1.6.1
- **Tag maintainer:** @baskaryan
### SparkLLM chat model usage
Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:
```python3
from langchain.chat_models.sparkllm import ChatSparkLLM
client = ChatSparkLLM(
spark_app_id="<app_id>",
spark_api_key="<api_key>",
spark_api_secret="<api_secret>"
)
```
This PR introduces update to Konko Integration with LangChain.
1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.
2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.
4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.
Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.
---------
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
Adds the ability to return similarity scores when using
`RetrievalQA.from_chain_type` with `MongoDBAtlasVectorSearch`. Requires
that `return_source_documents=True` is set.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vector_search.as_retriever(search_kwargs={"additional": ["similarity_score"]}),
return_source_documents=True
)
...
docs = qa({"query": "..."})
docs["source_documents"][0].metadata["score"] # score will be here
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
- **Description:** Allow passing run_id to MLflowCallbackHandler to
resume a run instead of creating a new run. Support recording retriever
relevant metrics. Refactor the code to fix some bugs.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
In this PR I added a post-processing function to normalize the
embeddings. This happens only if the new `normalize` flag is `True`.
---------
Co-authored-by: taamedag <Davide.Menini@swisscom.com>
- **Description:** Baichuan Chat (with both Baichuan-Turbo and
Baichuan-Turbo-192K models) has updated their APIs. There are breaking
changes. For example, BAICHUAN_SECRET_KEY is removed in the latest API
but is still required in Langchain. Baichuan's Langchain integration
needs to be updated to the latest version.
- **Issue:** #15206
- **Dependencies:** None,
- **Twitter handle:** None
@hwchase17.
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
**Description:**
- Implement `SQLStrStore` and `SQLDocStore` classes that inherits from
`BaseStore` to allow to persist data remotely on a SQL server.
- SQL is widely used and sometimes we do not want to install a caching
solution like Redis.
- Multiple issues/comments complain that there is no easy remote and
persistent solution that are not in memory (users want to replace
InMemoryStore), e.g.,
https://github.com/langchain-ai/langchain/issues/14267,
https://github.com/langchain-ai/langchain/issues/15633,
https://github.com/langchain-ai/langchain/issues/14643,
https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
- This is particularly painful when wanting to use
`ParentDocumentRetriever `
- This implementation is particularly useful when:
* it's expensive to construct an InMemoryDocstore/dict
* you want to retrieve documents from remote sources
* you just want to reuse existing objects
- This implementation integrates well with PGVector, indeed, when using
PGVector, you already have a SQL instance running. `SQLDocStore` is a
convenient way of using this instance to store documents associated to
vectors. An integration example with ParentDocumentRetriever and
PGVector is provided in docs/docs/integrations/stores/sql.ipynb or
[here](https://github.com/gcheron/langchain/blob/sql-store/docs/docs/integrations/stores/sql.ipynb).
- It persists `str` and `Document` objects but can be easily extended.
**Issue:**
Provide an easy SQL alternative to `InMemoryStore`.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** this PR upgrades the `HuggingFaceHub` LLM:
* support more tasks (`translation` and `conversational`)
* replaced the deprecated `InferenceApi` with `InferenceClient`
* adjusted the overall logic to use the "recommended" model for each
task when no model is provided, and vice-versa.
- **Tag mainter(s)**: @baskaryan @hwchase17
**Description** : New documents loader for visio files (with extension
.vsdx)
A [visio file](https://fr.wikipedia.org/wiki/Microsoft_Visio) (with
extension .vsdx) is associated with Microsoft Visio, a diagram creation
software. It stores information about the structure, layout, and
graphical elements of a diagram. This format facilitates the creation
and sharing of visualizations in areas such as business, engineering,
and computer science.
A Visio file can contain multiple pages. Some of them may serve as the
background for others, and this can occur across multiple layers. This
loader extracts the textual content from each page and its associated
pages, enabling the extraction of all visible text from each page,
similar to what an OCR algorithm would do.
**Dependencies** : xmltodict package
I also added LANGCHAIN_COMET_TRACING to enable the CometLLM tracing
integration similar to other tracing integrations. This is easier for
end-users to enable it rather than importing the callback and pass it
manually.
(This is the same content as
https://github.com/langchain-ai/langchain/pull/14650 but rebased and
squashed as something seems to confuse Github Action).
Description: Added support for asynchronous streaming in the Bedrock
class and corresponding tests.
Primarily:
async def aprepare_output_stream
async def _aprepare_input_and_invoke_stream
async def _astream
async def _acall
I've ensured that the code adheres to the project's linting and
formatting standards by running make format, make lint, and make test.
Issue: #12054, #11589
Dependencies: None
Tag maintainer: @baskaryan
Twitter handle: @dominic_lovric
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
Replace this entire comment with:
- **Description:** allow user to define tVector length in PGVector when
creating the embedding store, this allows for later indexing
- **Issue:** #16132
- **Dependencies:** None
**Description:** Add support for querying TigerGraph databases through
the InquiryAI service.
**Issue**: N/A
**Dependencies:** N/A
**Twitter handle:** @TigerGraphDB
there is a case where "coords" does not exist in the "sentence"
therefore, the "split(";")" will lead to error.
we can fix that by adding "if sentence.get("coords") is not None:"
the resulting empty "sbboxes" from this scenario will raise error at
"sbboxes[0]["page"]" because sbboxes are empty.
the PDF from https://pubmed.ncbi.nlm.nih.gov/23970373/ can replicate
those errors.
This pull request integrates the TiDB database into LangChain for
storing message history, marking one of several steps towards a
comprehensive integration of TiDB with LangChain.
A simple usage
```python
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory
history = TiDBChatMessageHistory(
connection_string="mysql+pymysql://<host>:<PASSWORD>@<host>:4000/<db>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true",
session_id="code_gen",
earliest_time=datetime.utcnow(), # Optional to set earliest_time to load messages after this time point.
)
history.add_user_message("hi! How's feature going?")
history.add_ai_message("It's almot done")
```