<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
- easier to write custom logic/loops with automatic tracing
- if you don't want to streaming support write a regular function and
pass to RunnableLambda
- if you do want streaming write a generator and pass it to
RunnableGenerator
```py
import json
from typing import AsyncIterator
from langchain_core.messages import BaseMessage, FunctionMessage, HumanMessage
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import Runnable, RunnableGenerator, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser
from langchain.chat_models import ChatOpenAI
from langchain.tools.render import format_tool_to_openai_function
def _get_tavily():
from langchain.tools.tavily_search import TavilySearchResults
from langchain.utilities.tavily_search import TavilySearchAPIWrapper
tavily_search = TavilySearchAPIWrapper()
return TavilySearchResults(api_wrapper=tavily_search)
async def _agent_executor_generator(
input: AsyncIterator[list[BaseMessage]],
*,
max_iterations: int = 10,
tools: dict[str, BaseTool],
agent: Runnable[list[BaseMessage], BaseMessage],
parser: Runnable[BaseMessage, AgentAction | AgentFinish],
) -> AsyncIterator[BaseMessage]:
messages = [m async for mm in input for m in mm]
for _ in range(max_iterations):
next_message = await agent.ainvoke(messages)
yield next_message
messages.append(next_message)
parsed = await parser.ainvoke(next_message)
if isinstance(parsed, AgentAction):
result = await tools[parsed.tool].ainvoke(parsed.tool_input)
next_message = FunctionMessage(name=parsed.tool, content=json.dumps(result))
yield next_message
messages.append(next_message)
elif isinstance(parsed, AgentFinish):
return
def get_agent_executor(tools: list[BaseTool], system_message: str):
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0, streaming=True)
prompt = ChatPromptTemplate.from_messages(
[
("system", system_message),
MessagesPlaceholder(variable_name="messages"),
]
)
llm_with_tools = llm.bind(
functions=[format_tool_to_openai_function(t) for t in tools]
)
agent = {"messages": RunnablePassthrough()} | prompt | llm_with_tools
parser = OpenAIFunctionsAgentOutputParser()
executor = RunnableGenerator(_agent_executor_generator)
return executor.bind(
tools={tool.name for tool in tools}, agent=agent, parser=parser
)
agent = get_agent_executor([_get_tavily()], "You are a very nice agent!")
async def main():
async for message in agent.astream(
[HumanMessage(content="whats the weather in sf tomorrow?")]
):
print(message)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
```
results in this trace
https://smith.langchain.com/public/fa17f05d-9724-4d08-8fa1-750f8fcd051b/r
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** SingleFileFacebookMessengerChatLoader did not handle
the case for when messages had stickers and/or photos so fixed that.
- **Issue:** #15356
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** updates/enhancements to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider
(prompt tuned models and prompt templates deployments support)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** : @hwchase17 , @eyurtsev , @baskaryan
- **Twitter handle:** details in comment below.
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The fix#14221 has broken default gitlab url which is forcing the users
to specify GITLAB_URL for default one. With this fix if GITLAB_URL is
not set, the default gitlab url will be taken.
- **Description:** Add the GITHUB URL instead of None
- **Issue:** the issue #14221 has broken the default github URL
- **Dependencies:** None
- **Tag maintainer:** @hwchase17
- **Twitter handle:** manjunath_shiva
- **Description:** This PR adds `api_base` to `_client_params` in the
`chat_model` of LiteLLM to ensure it's included in API calls.
Previously, `api_base` was set on the client but was not included in the
parameters passed to the completion function. This change ensures that
`api_base` is correctly passed to all API calls.
- **Issue:** #14338
- **Tag maintainer:** @hwchase17 @agola11
- **Twitter handle:** @LMS_David_RS
Sometimes, the tool_schema is like:
` {'action_name': 'search_items', 'action': {'term': 'pizza'}}`
sometimes, specially with gpt3.5 it comes like:
`{'action_name': 'search_items', 'term': 'pizza'}`
and it fails.
This PR is a way to make it work in both scenarios.
issues releated: #6624
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Co-authored-by: Lucca Zenobio <lucca.zenobio@ifood.com.br>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
This change addresses the issue where DashScopeEmbeddingAPI limits
requests to 25 lines of data, and DashScopeEmbeddings did not handle
cases with more than 25 lines, leading to errors. I have implemented a
fix to manage data exceeding this limit efficiently.
---------
Co-authored-by: xuxiang <xuxiang@aliyun.com>
Adding to my previously, already merged PR I made some further
improvements:
* Added documentation to the existing Pydantic Parser notebook, with an
example using LCEL and `with_retry()` on `OutputParserException`.
* Added an additional output example to the prompt
* More lenient parser in terms of LLM output format
* Amended unit test
FYI @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Update _retrieve_ref inside json_schema.py to include
an isdigit() check
- **Issue:** This library is used inside dereference_refs inside
langchain_community.agent_toolkits.openapi.spec. When I read in a yaml
file which has references for "400", "401" etc; the line "out =
out[component]" causes a KeyError. The isdigit() check ensures that if
it is an integer like "400" or "401"; it converts it into integer before
using it as a key to prevent the error.
- **Dependencies:** No dependencies
- **Tag maintainer:** @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Description: _python-lint_
This agent writes Python code that is formatted and linted using
`black`, `ruff`, and `mypy`, but does not execute the code. It writes
the code to a temporary file and then runs the linters. Once these
checks pass, the code is returned.
# Dependencies
- black
- ruff
- mypy
# Demo
The functionality can be seen here:
https://huggingface.co/spaces/joshuasundance/langchain-streamlit-demo
Added some Headers in steam tool notebook to match consistency with the
other toolkit notebooks
- Dependencies: no new dependencies
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
`integrations/document_loaders/` `Excel` and `OneNote` pages in the
navbar were in the wrong sort order. It is because the file names are
not equal to the page titles.
- renamed `excel` and `onenote` file names
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Using PGVector vector store, it was only possible to
filter for values equals, in or not in metadata. Extended this feature
to work with the following keywords : IN, NIN, BETWEEN, GT, LT, NE, EQ,
LIKE, CONTAINS, OR, AND
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The regex used to match "Action" and "Action Input" in the output parser
has been updated. Previously, the regex did not correctly handle
multi-line inputs for "Action Input". The updated code uses the
're.DOTALL' flag to ensure multi-line inputs are correctly captured.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:**
- This PR introduces a significant enhancement to the LangChain project
by integrating a new chat model powered by the third-generation base
large model, ChatGLM3, via the zhipuai API.
- This advanced model supports functionalities like function calls, code
interpretation, and intelligent Agent capabilities.
- The additions include the chat model itself, comprehensive
documentation in the form of Python notebook docs, and thorough testing
with both unit and integrated tests.
- **Dependencies:** This update relies on the ZhipuAI package as a key
dependency.
- **Twitter handle:** If this PR receives spotlight attention, we would
be honored to receive a mention for our integration of the advanced
ChatGLM3 model via the ZhipuAI API. Kindly tag us at @kaiwu.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
TO DO: Continue refining and enhancing both the unit tests and
integrated tests.
---------
Co-authored-by: jing <jingguo92@gmail.com>
Co-authored-by: hyy1987 <779003812@qq.com>
Co-authored-by: jianchuanqi <qijianchuan@hotmail.com>
Co-authored-by: lirq <whuclarence@gmail.com>
Co-authored-by: whucalrence <81530213+whucalrence@users.noreply.github.com>
Co-authored-by: Jing Guo <48378126+JaneCrystall@users.noreply.github.com>
Description: Volcano Ark is an enterprise-grade large-model service
platform for developers, providing a full range of functions and
services such as model training, inference, evaluation, fine-tuning. You
can visit its homepage at https://www.volcengine.com/docs/82379/1099455
for details. This change could help developers use the platform for
embedding.
Issue: None
Dependencies: volcengine
Tag maintainer: @baskaryan
Twitter handle: @hinnnnnnnnnnnns
---------
Co-authored-by: lujingxuansc <lujingxuansc@bytedance.com>
Updated prompt input suggestions
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** updated the outdated code in the document that was
generating the error,
- **Issue:** #15086 ,
- **Dependencies:** N/A,
- **Twitter handle:** [@vardhaman722](https://twitter.com/vardhaman722)
**Description:** the MWDumpLoader implementation currently does not
support the lazy_load method, and the files are usually very large. We
are proposing refactoring the load function, extracting two private
functions with the functionality of loading the dump file and parsing a
single page, to reuse the code in the lazy_load implementation.
**Description:**
This PR adds the `**kwargs` parameter to six calls in the `chroma.py`
package. All functions already were able to receive `kwargs` but they
were discarded before.
**Issue:**
When passing `kwargs` to functions in the `chroma.py` package they are
being ignored.
For example:
```
chroma_instance.similarity_search_with_score(
query,
k=100,
include=["metadatas", "documents", "distances", "embeddings"], # this parameter gets ignored
)
```
The `include` parameter does not get passed on to the next function and
does not have any effect.
**Dependencies:**
None
- A documentation change in the example listed under:
https://python.langchain.com/docs/integrations/toolkits/playwright
- `create_async_playwright_browser` does not exist under the module:
`langchain.tools.playwright.utils` post >= 0.0.351 version
- No dependencies to be changed
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
The quickstart doc is missing a few but very simple things that without
them, the code does not work. This PR fixes that by
- Adding commands to install `tiktoken` and `langchainhub`
- Adds a comma between 2 parameters for one of the methods
- **Description:** Fix a few spelling and grammar issues
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** @donovancmuller
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This PR corrects a documentation error in the
`ollama` usage tutorial. Specifically, it fixes a missing `])` in the
`CallbackManager()` example, ensuring that the code snippet is
syntactically correct and can be successfully executed.
- **Issue:** N/A
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** My twitter is @yhzhu99
Updated comment for better understanding
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:**
- support custom kwargs in object initialization. For instantance, QPS
differs from multiple object(chat/completion/embedding with diverse
models), for which global env is not a good choice for configuration.
- **Issue:** no
- **Dependencies:** no
- **Twitter handle:** no
@baskaryan PTAL