Description: Removed some broken links for popular chains and
additional/advanced chains.
Issue: None
Dependencies: None
Tag maintainer: none yet
Twitter handle: ferrants
Alternatively, these pages could be created, there are snippets for the
popular pages, but no popular page itself.
- Description: Updated the error message in the Chroma vectorestore,
that displayed a wrong import path for
langchain.vectorstores.utils.filter_complex_metadata.
- Tag maintainer: @sbusso
We use your library and we have a mypy error because you have not
defined a default value for the optional class property.
Please fix this issue to make it compatible with the mypy. Thank you.
As the title suggests.
Replace this entire comment with:
- Description: Add a syntactic sugar import fix for #10186
- Issue: #10186
- Tag maintainer: @baskaryan
- Twitter handle: @Spartee
- Description: Fixes user issue with custom keys for ``from_texts`` and
``from_documents`` methods.
- Issue: #10411
- Tag maintainer: @baskaryan
- Twitter handle: @spartee
## Description:
I've integrated CTranslate2 with LangChain. CTranlate2 is a recently
popular library for efficient inference with Transformer models that
compares favorably to alternatives such as HF Text Generation Inference
and vLLM in
[benchmarks](https://hamel.dev/notes/llm/inference/03_inference.html).
- Description:
Adding language as parameter to NLTK, by default it is only using
English. This will help using NLTK splitter for other languages. Change
is simple, via adding language as parameter to NLTKTextSplitter and then
passing it to nltk "sent_tokenize".
- Issue: N/A
- Dependencies: N/A
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
#3983 mentions serialization/deserialization issues with both
`RetrievalQA` & `RetrievalQAWithSourcesChain`.
`RetrievalQA` has already been fixed in #5818.
Mimicing #5818, I added the logic for `RetrievalQAWithSourcesChain`.
---------
Co-authored-by: Markus Tretzmüller <markus.tretzmueller@cortecs.at>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: add where_document filter parameter in Chroma
- Issue: [10082](https://github.com/langchain-ai/langchain/issues/10082)
- Dependencies: no
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: no
@hwchase17
---------
Co-authored-by: Jeremy Lai <jeremy_lai@wiwynn.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Adding C# language support for
`RecursiveCharacterTextSplitter`
**Issue:** N/A
**Dependencies:** N/A
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hi @baskaryan,
I've made updates to LLMonitorCallbackHandler to address a few bugs
reported by users
These changes don't alter the fundamental behavior of the callback
handler.
Thanks you!
---------
Co-authored-by: vincelwt <vince@lyser.io>
_Thank you to the LangChain team for the great project and in advance
for your review. Let me know if I can provide any other additional
information or do things differently in the future to make your lives
easier 🙏 _
@hwchase17 please let me know if you're not the right person to review 😄
This PR enables LangChain to access the Konko API via the chat_models
API wrapper.
Konko API is a fully managed API designed to help application
developers:
1. Select the right LLM(s) for their application
2. Prototype with various open-source and proprietary LLMs
3. Move to production in-line with their security, privacy, throughput,
latency SLAs without infrastructure set-up or administration using Konko
AI's SOC 2 compliant infrastructure
_Note on integration tests:_
We added 14 integration tests. They will all fail unless you export the
right API keys. 13 will pass with a KONKO_API_KEY provided and the other
one will pass with a OPENAI_API_KEY provided. When both are provided,
all 14 integration tests pass. If you would like to test this yourself,
please let me know and I can provide some temporary keys.
### Installation and Setup
1. **First you'll need an API key**
2. **Install Konko AI's Python SDK**
1. Enable a Python3.8+ environment
`pip install konko`
3. **Set API Keys**
**Option 1:** Set Environment Variables
You can set environment variables for
1. KONKO_API_KEY (Required)
2. OPENAI_API_KEY (Optional)
In your current shell session, use the export command:
`export KONKO_API_KEY={your_KONKO_API_KEY_here}`
`export OPENAI_API_KEY={your_OPENAI_API_KEY_here} #Optional`
Alternatively, you can add the above lines directly to your shell
startup script (such as .bashrc or .bash_profile for Bash shell and
.zshrc for Zsh shell) to have them set automatically every time a new
shell session starts.
**Option 2:** Set API Keys Programmatically
If you prefer to set your API keys directly within your Python script or
Jupyter notebook, you can use the following commands:
```python
konko.set_api_key('your_KONKO_API_KEY_here')
konko.set_openai_api_key('your_OPENAI_API_KEY_here') # Optional
```
### Calling a model
Find a model on the [[Konko Introduction
page](https://docs.konko.ai/docs#available-models)](https://docs.konko.ai/docs#available-models)
For example, for this [[LLama 2
model](https://docs.konko.ai/docs/meta-llama-2-13b-chat)](https://docs.konko.ai/docs/meta-llama-2-13b-chat).
The model id would be: `"meta-llama/Llama-2-13b-chat-hf"`
Another way to find the list of models running on the Konko instance is
through this
[[endpoint](https://docs.konko.ai/reference/listmodels)](https://docs.konko.ai/reference/listmodels).
From here, we can initialize our model:
```python
chat_instance = ChatKonko(max_tokens=10, model = 'meta-llama/Llama-2-13b-chat-hf')
```
And run it:
```python
msg = HumanMessage(content="Hi")
chat_response = chat_instance([msg])
```
- Add progress bar to eval runs
- Use thread pool for concurrency
- Update some error messages
- Friendlier project name
- Print out quantiles of the final stats
Closes LS-902
The `/docs/integrations/tools/sqlite` page is not about the tool
integrations.
I've moved it into `/docs/use_cases/sql/sqlite`.
`vercel.json` modified
As a result two pages now under the `/docs/use_cases/sql/` folder. So
the `sql` root page moved down together with `sqlite` page.
Fixed the description of tool QuerySQLCheckerTool, the last line of the
string description had the old name of the tool 'sql_db_query', this
caused the models to sometimes call the non-existent tool
The issue was not numerically identified.
No dependencies
## Description
Adds Supabase Vector as a self-querying retriever.
- Designed to be backwards compatible with existing `filter` logic on
`SupabaseVectorStore`.
- Adds new filter `postgrest_filter` to `SupabaseVectorStore`
`similarity_search()` methods
- Supports entire PostgREST [filter query
language](https://postgrest.org/en/stable/references/api/tables_views.html#read)
(used by self-querying retriever, but also works as an escape hatch for
more query control)
- `SupabaseVectorTranslator` converts Langchain filter into the above
PostgREST query
- Adds Jupyter Notebook for the self-querying retriever
- Adds tests
## Tag maintainer
@hwchase17
## Twitter handle
[@ggrdson](https://twitter.com/ggrdson)
- Description: to allow boto3 assume role for AWS cross account use
cases to read and update the chat history,
- Issue: use case I faced in my company,
- Dependencies: no
- Tag maintainer: @baskaryan ,
- Twitter handle: @tmin97
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Fixing Colab broken link and comment correction to align
with the code that uses Warren Buffet for wiki query
- Issue: None open
- Dependencies: none
- Tag maintainer: n/a
- Twitter handle: Not a PR change but: kcocco
### Description
Add multiple language support to Anonymizer
PII detection in Microsoft Presidio relies on several components - in
addition to the usual pattern matching (e.g. using regex), the analyser
uses a model for Named Entity Recognition (NER) to extract entities such
as:
- `PERSON`
- `LOCATION`
- `DATE_TIME`
- `NRP`
- `ORGANIZATION`
[[Source]](https://github.com/microsoft/presidio/blob/main/presidio-analyzer/presidio_analyzer/predefined_recognizers/spacy_recognizer.py)
To handle NER in specific languages, we utilize unique models from the
`spaCy` library, recognized for its extensive selection covering
multiple languages and sizes. However, it's not restrictive, allowing
for integration of alternative frameworks such as
[Stanza](https://microsoft.github.io/presidio/analyzer/nlp_engines/spacy_stanza/)
or
[transformers](https://microsoft.github.io/presidio/analyzer/nlp_engines/transformers/)
when necessary.
### Future works
- **automatic language detection** - instead of passing the language as
a parameter in `anonymizer.anonymize`, we could detect the language/s
beforehand and then use the corresponding NER model. We have discussed
this internally and @mateusz-wosinski-ds will look into a standalone
language detection tool/chain for LangChain 😄
### Twitter handle
@deepsense_ai / @MaksOpp
### Tag maintainer
@baskaryan @hwchase17 @hinthornw