**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**: Updated tests
resolves https://github.com/langchain-ai/langchain/issues/23911
When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.
Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.
This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
Thank you for contributing to LangChain!
- [x] **PR title**: "IBM: Added WatsonxChat to chat models preview,
update passing params to invoke method"
- [x] **PR message**:
- **Description:** Added WatsonxChat passing params to invoke method,
added integration tests
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.
This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.
When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.
2 retrieving methods are added to the VectorStore ones :
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.
If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.
An implementation for Apache Cassandra is also proposed.
See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.
**Twitter handle:** _cbornet
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.
The PR makes the following changes:
1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.
A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
The `langchain_common.vectostore.Redis.delete()` must not be a
`@staticmethod`.
With the current implementation, it's not possible to have multiple
instances of Redis vectorstore because all versions must share the
`REDIS_URL`.
It's not conform with the base class.
**Description**: After reviewing the prompts API, it is clear that the
only way a user can explicitly mark an input variable as optional is
through the `MessagePlaceholder.optional` attribute. Otherwise, the user
must explicitly pass in the `input_variables` expected to be used in the
`BasePromptTemplate`, which will be validated upon execution. Therefore,
to semantically handle a `MessagePlaceholder` `variable_name` as
optional, we will treat the `variable_name` of `MessagePlaceholder` as a
`partial_variable` if it has been marked as optional. This approach
aligns with how the `variable_name` of `MessagePlaceholder` is already
handled
[here](https://github.com/keenborder786/langchain/blob/optional_input_variables/libs/core/langchain_core/prompts/chat.py#L991).
Additionally, an attribute `optional_variable` has been added to
`BasePromptTemplate`, and the `variable_name` of `MessagePlaceholder` is
also made part of `optional_variable` when marked as optional.
Moreover, the `get_input_schema` method has been updated for
`BasePromptTemplate` to differentiate between optional and non-optional
variables.
**Issue**: #22832, #21425
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description: Fixed a typo during the imports for the
GoogleDriveSearchTool
Issue: It's only for the docs, but it bothered me so i decided to fix it
quickly :D
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
- **Twitter handle:** Andre_Q_Pereira
---------
Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR adds a `SingleStoreDBSemanticCache` class that implements a
cache based on SingleStoreDB vector store, integration tests, and a
notebook example.
Additionally, this PR contains minor changes to SingleStoreDB vector
store:
- change add texts/documents methods to return a list of inserted ids
- implement delete(ids) method to delete documents by list of ids
- added drop() method to drop a correspondent database table
- updated integration tests to use and check functionality implemented
above
CC: @baskaryan, @hwchase17
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765
Now the tools can be bound by calling `bind_tools`
```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]
llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
This PR should fix the following issue:
https://github.com/langchain-ai/langchain/issues/23824
Introduced as part of this PR:
https://github.com/langchain-ai/langchain/pull/23416
I am unable to reproduce the issue locally though it's clear that we're
getting a `serialized` object which is not a dictionary somehow.
The test below passes for me prior to the PR as well
```python
def test_cache_with_sqllite() -> None:
from langchain_community.cache import SQLiteCache
from langchain_core.globals import set_llm_cache
cache = SQLiteCache(database_path=".langchain.db")
set_llm_cache(cache)
chat_model = FakeListChatModel(responses=["hello", "goodbye"], cache=True)
assert chat_model.invoke("How are you?").content == "hello"
assert chat_model.invoke("How are you?").content == "hello"
```
**Description**: The ``declarative_base()`` function is now available as
sqlalchemy.orm.declarative_base(). (depreca ted since: 2.0) (Background
on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
- Description: Add support for `path` and `detail` keys in
`ImagePromptTemplate`. Previously, only variables associated with the
`url` key were considered. This PR allows for the inclusion of a local
image path and a detail parameter as input to the format method.
- Issues:
- fixes#20820
- related to #22024
- Dependencies: None
- Twitter handle: @DeschampsTho5
---------
Co-authored-by: tdeschamps <tdeschamps@kameleoon.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
The mongdb have some errors.
- `add_texts() -> List` returns a list of `ObjectId`, and not a list of
string
- `delete()` with `id` never remove chunks.
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
enviroment -> environment
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Use pydantic to infer nested schemas and all that fun.
Include bagatur's convenient docstring parser
Include annotation support
Previously we didn't adequately support many typehints in the
bind_tools() method on raw functions (like optionals/unions, nested
types, etc.)