Commit Graph

706 Commits

Author SHA1 Message Date
Bagatur
245cb5a252
core[patch]: Release 0.2.27 (#24952) 2024-08-02 01:43:24 +00:00
Bagatur
199e9c5ae0
core[patch]: Fix tool args schema inherited field parsing (#24936)
Fix #24925
2024-08-01 18:36:33 -07:00
Leonid Ganeline
4092876863
core: docstrings `BaseCallbackHandler update (#24948)
Added missed docstrings
2024-08-01 20:46:53 -04:00
WU LIFU
ad16eed119
core[patch]: runnable config ensure_config deep copy from var_child_runnable… (#24862)
**issue**: #24660 
RunnableWithMessageHistory.stream result in error because the
[evaluation](https://github.com/langchain-ai/langchain/blob/master/libs/core/langchain_core/runnables/branch.py#L220)
of the branch
[condition](99eb31ec41/libs/core/langchain_core/runnables/history.py (L328C1-L329C1))
unexpectedly trigger the
"[on_end](99eb31ec41/libs/core/langchain_core/runnables/history.py (L332))"
(exit_history) callback of the default branch


**descriptions**
After a lot of investigation I'm convinced that the root cause is that
1. during the execution of the runnable, the
[var_child_runnable_config](99eb31ec41/libs/core/langchain_core/runnables/config.py (L122))
is shared between the branch
[condition](99eb31ec41/libs/core/langchain_core/runnables/history.py (L328C1-L329C1))
runnable and the [default branch
runnable](99eb31ec41/libs/core/langchain_core/runnables/history.py (L332))
within the same context
2. when the default branch runnable runs, it gets the
[var_child_runnable_config](99eb31ec41/libs/core/langchain_core/runnables/config.py (L163))
and may unintentionally [add more handlers
](99eb31ec41/libs/core/langchain_core/runnables/config.py (L325))to
the callback manager of this config
3. when it is again the turn for the
[condition](99eb31ec41/libs/core/langchain_core/runnables/history.py (L328C1-L329C1))
to run, it gets the `var_child_runnable_config` whose callback manager
has the handlers added by the default branch. When it runs that handler
(`exit_history`) it leads to the error
   
with the assumption that, the `ensure_config` function actually does
want to create a immutable copy from `var_child_runnable_config` because
it starts with an [`empty` variable
](99eb31ec41/libs/core/langchain_core/runnables/config.py (L156)),
i go ahead to do a deepcopy to ensure that future modification to the
returned value won't affect the `var_child_runnable_config` variable
   
   Having said that I actually 
1. don't know if this is a proper fix
2. don't know whether it will lead to other unintended consequence 
3. don't know why only "stream" runs into this issue while "invoke" runs
without problem

so @nfcampos @hwchase17 please help review, thanks!

---------

Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-08-01 17:30:32 -07:00
Eugene Yurtsev
75776e4a54
core[patch]: In unit tests, use _schema() instead of BaseModel.schema() (#24930)
This PR introduces a module with some helper utilities for the pydantic
1 -> 2 migration.

They're meant to be used in the following way:

1) Use the utility code to get unit tests pass without requiring
modification to the unit tests
2) (If desired) upgrade the unit tests to match pydantic 2 output
3) (If desired) stop using the utility code

Currently, this module contains a way to map `schema()` generated by
pydantic 2 to (mostly) match the output from pydantic v1.
2024-08-01 11:59:04 -04:00
Bagatur
25b93cc4c0
core[patch]: stringify tool non-content blocks (#24626)
Slightly breaking bugfix. Shouldn't cause too many issues since no
models would be able to handle non-content block ToolMessage.content
anyways.
2024-07-31 16:42:38 -07:00
Eugene Yurtsev
210623b409
core[minor]: Add support for pydantic 2 to utility to get fields (#24899)
Add compatibility for pydantic 2 for a utility function.

This will help push some small changes to master, so they don't have to
be kept track of on a separate branch.
2024-07-31 19:11:07 +00:00
Bagatur
7d1694040d
core[patch]: Release 0.2.26 (#24898) 2024-07-31 19:00:50 +00:00
Eugene Yurtsev
5099a9c9b4
core[patch]: Update unit tests with a workaround for using AnyID in pydantic 2 (#24892)
Pydantic 2 ignores __eq__ overload for subclasses of strings.
2024-07-31 14:42:12 -04:00
Bagatur
8461934c2b
core[patch], integrations[patch]: convert TypedDict to tool schema support (#24641)
supports following UX

```python
    class SubTool(TypedDict):
        """Subtool docstring"""

        args: Annotated[Dict[str, Any], {}, "this does bar"]

    class Tool(TypedDict):
        """Docstring
        Args:
            arg1: foo
        """

        arg1: str
        arg2: Union[int, str]
        arg3: Optional[List[SubTool]]
        arg4: Annotated[Literal["bar", "baz"], ..., "this does foo"]
        arg5: Annotated[Optional[float], None]
```

- can parse google style docstring
- can use Annotated to specify default value (second arg)
- can use Annotated to specify arg description (third arg)
- can have nested complex types
2024-07-31 18:27:24 +00:00
Erick Friis
88418af3f5
core: release 0.2.25 (#24833) 2024-07-30 18:41:09 +00:00
Nuno Campos
68ecebf1ec
core: Fix implementation of trim_first_node/trim_last_node to use exact same definition of first/last node as in the getter methods (#24802) 2024-07-30 08:44:27 -07:00
Bagatur
a6d1fb4275
core[patch]: introduce ToolMessage.status (#24628)
Anthropic models (including via Bedrock and other cloud platforms)
accept a status/is_error attribute on tool messages/results
(specifically in `tool_result` content blocks for Anthropic API). Adding
a ToolMessage.status attribute so that users can set this attribute when
using those models
2024-07-29 14:01:53 -07:00
ccurme
9998e55936
core[patch]: support tool calls with non-pickleable args in tools (#24741)
Deepcopy raises with non-pickleable args.
2024-07-29 13:18:39 -04:00
William FH
01ab2918a2
core[patch]: Respect injected in bound fns (#24733)
Since right now you cant use the nice injected arg syntas directly with
model.bind_tools()
2024-07-28 15:45:19 -07:00
Bagatur
8964f8a710
core: use mypy<1.11 (#24749)
Bug in mypy 1.11.0 blocking CI, see example:
https://github.com/langchain-ai/langchain/actions/runs/10127096903/job/28004492692?pr=24641
2024-07-27 16:37:02 -07:00
William FH
0535d72927
Add type() in error msg (#24723) 2024-07-26 16:48:45 -07:00
Eugene Yurtsev
9be6b5a20f
core[patch]: Correct doc-string for InMemoryRateLimiter (#24730)
Correct the documentaiton string.
2024-07-26 22:17:22 +00:00
Bagatur
315223ce26
core[patch]: Release 0.2.24 (#24722) 2024-07-26 18:55:32 +00:00
Bagatur
ad7581751f
core[patch]: ChatPromptTemplate.init same as ChatPromptTemplate.from_… (#24486) 2024-07-26 10:48:39 -07:00
Eugene Yurtsev
20690db482
core[minor]: Add BaseModel.rate_limiter, RateLimiter abstraction and in-memory implementation (#24669)
This PR proposes to create a rate limiter in the chat model directly,
and would replace: https://github.com/langchain-ai/langchain/pull/21992

It resolves most of the constraints that the Runnable rate limiter
introduced:

1. It's not annoying to apply the rate limiter to existing code; i.e., 
possible to roll out the change at the location where the model is
instantiated,
rather than at every location where the model is used! (Which is
necessary
   if the model is used in different ways in a given application.)
2. batch rate limiting is enforced properly
3. the rate limiter works correctly with streaming
4. the rate limiter is aware of the cache
5. The rate limiter can take into account information about the inputs
into the
model (we can add optional inputs to it down-the road together with
outputs!)

The only downside is that information will not be properly reflected in
tracing
as we don't have any metadata evens about a rate limiter. So the total
time
spent on a model invocation will be: 

* time spent waiting for the rate limiter
* time spend on the actual model request

## Example

```python
from langchain_core.rate_limiters import InMemoryRateLimiter
from langchain_groq import ChatGroq

groq = ChatGroq(rate_limiter=InMemoryRateLimiter(check_every_n_seconds=1))
groq.invoke('hello')
```
2024-07-26 03:03:34 +00:00
Nuno Campos
8734cabc09
core: Don't draw None edge labels (#24690)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-25 22:12:39 +00:00
ccurme
58dd69f7f2
core[patch]: fix mutating tool calls (#24677)
In some cases tool calls are mutated when passed through a tool.
2024-07-25 16:46:36 +00:00
남광우
256bad3251
core[minor]: Support asynchronous in InMemoryVectorStore (#24472)
### Description

* support asynchronous in InMemoryVectorStore
* since embeddings might be possible to call asynchronously, ensure that
both asynchronous and synchronous functions operate correctly.
2024-07-25 11:36:55 -04:00
Eugene Yurtsev
7dd6b32991
core[minor]: Add InMemoryRateLimiter (#21992)
This PR introduces the following Runnables:

1. BaseRateLimiter: an abstraction for specifying a time based rate
limiter as a Runnable
2. InMemoryRateLimiter: Provides an in-memory implementation of a rate
limiter

## Example

```python

from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda
from datetime import datetime

foo = InMemoryRateLimiter(requests_per_second=0.5)

def meow(x):
    print(datetime.now().strftime("%H:%M:%S.%f"))
    return x

chain = foo | meow

for _ in range(10):
    print(chain.invoke('hello'))
```

Produces:

```
17:12:07.530151
hello
17:12:09.537932
hello
17:12:11.548375
hello
17:12:13.558383
hello
17:12:15.568348
hello
17:12:17.578171
hello
17:12:19.587508
hello
17:12:21.597877
hello
17:12:23.607707
hello
17:12:25.617978
hello
```


![image](https://github.com/user-attachments/assets/283af59f-e1e1-408b-8e75-d3910c3c44cc)


## Interface

The rate limiter uses the following interface for acquiring a token:

```python
class BaseRateLimiter(Runnable[Input, Output], abc.ABC):
  @abc.abstractmethod
  def acquire(self, *, blocking: bool = True) -> bool:
      """Attempt to acquire the necessary tokens for the rate limiter.```
```

The flag `blocking` has been added to the abstraction to allow
supporting streaming (which is easier if blocking=False).

## Limitations

- The rate limiter is not designed to work across different processes.
It is an in-memory rate limiter, but it is thread safe.
- The rate limiter only supports time-based rate limiting. It does not
take into account the size of the request or any other factors.
- The current implementation does not handle streaming inputs well and
will consume all inputs even if the rate limit has been reached. Better
support for streaming inputs will be added in the future.
- When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.
One way to mitigate this is to use batch_as_completed() or
abatch_as_completed().

## Bursty behavior in `batch` and `abatch`

When the rate limiter is combined with another runnable via a
RunnableSequence, usage of .batch() or .abatch() will only respect the
average rate limit. There will be bursty behavior as .batch() and
.abatch() wait for each step to complete before starting the next step.

This becomes a problem if users are using `batch` and `abatch` with many
inputs (e.g., 100). In this case, there will be a burst of 100 inputs
into the batch of the rate limited runnable.

1. Using a RunnableBinding

The API would look like:

```python
from langchain_core.runnables import InMemoryRateLimiter, RunnableLambda

rate_limiter = InMemoryRateLimiter(requests_per_second=0.5)

def meow(x):
    return x

rate_limited_meow = RunnableLambda(meow).with_rate_limiter(rate_limiter)
```

2. Another option is to add some init option to RunnableSequence that
changes `.batch()` to be depth first (e.g., by delegating to
`batch_as_completed`)

```python
RunnableSequence(first=rate_limiter, last=model, how='batch-depth-first')
```

Pros: Does not require Runnable Binding
Cons: Feels over-complicated
2024-07-25 01:34:03 +00:00
ccurme
2d6b0bf3e3
core[patch]: add to RunnableLambda docstring (#24575)
Explain behavior when function returns a runnable.
2024-07-23 20:46:44 +00:00
Bagatur
918e1c8a93
core[patch]: Release 0.2.23 (#24557) 2024-07-23 09:01:18 -07:00
ZhangShenao
a14e02ab33
core[patch]: Fix word spelling error in globals.py (#24532)
Fix word spelling error in `globals.py`

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-23 14:27:16 +00:00
Bagatur
70c71efcab
core[patch]: merge_content fix (#24526) 2024-07-22 22:20:22 -07:00
Ben Chambers
5ac936a284
community[minor]: add document transformer for extracting links (#24186)
- **Description:** Add a DocumentTransformer for executing one or more
`LinkExtractor`s and adding the extracted links to each document.
- **Issue:** n/a
- **Depedencies:** none

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-07-22 22:01:21 -04:00
Erick Friis
3dce2e1d35
all: add release notes to pypi (#24519) 2024-07-22 13:59:13 -07:00
Bagatur
8a140ee77c
core[patch]: don't serialize BasePromptTemplate.input_types (#24516)
Candidate fix for #24513
2024-07-22 13:30:16 -07:00
Bagatur
236e957abb
core,groq,openai,mistralai,robocorp,fireworks,anthropic[patch]: Update BaseModel subclass and instance checks to handle both v1 and proper namespaces (#24417)
After this PR chat models will correctly handle pydantic 2 with
bind_tools and with_structured_output.


```python
import pydantic
print(pydantic.__version__)
```
2.8.2

```python
from langchain_openai import ChatOpenAI
from pydantic import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_PNUFa4pdfNOYXxIMHc6ps2Do', 'type': 'tool_call'}]
<class '__main__.Add'>
```


```python
from langchain_openai import ChatOpenAI
from pydantic.v1 import BaseModel, Field

class Add(BaseModel):
    x: int
    y: int

model = ChatOpenAI().bind_tools([Add])
print(model.invoke('2 + 5').tool_calls)

model = ChatOpenAI().with_structured_output(Add)
print(type(model.invoke('2 + 5')))
```

```python
[{'name': 'Add', 'args': {'x': 2, 'y': 5}, 'id': 'call_hhiHYP441cp14TtrHKx3Upg0', 'type': 'tool_call'}]
<class '__main__.Add'>
```

Addresses issues: https://github.com/langchain-ai/langchain/issues/22782

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-22 20:07:39 +00:00
ccurme
0f7569ddbc
core[patch]: enable RunnableWithMessageHistory without config (#23775)
Feedback that `RunnableWithMessageHistory` is unwieldy compared to
ConversationChain and similar legacy abstractions is common.

Legacy chains using memory typically had no explicit notion of threads
or separate sessions. To use `RunnableWithMessageHistory`, users are
forced to introduce this concept into their code. This possibly felt
like unnecessary boilerplate.

Here we enable `RunnableWithMessageHistory` to run without a config if
the `get_session_history` callable has no arguments. This enables
minimal implementations like the following:
```python
from langchain_core.chat_history import InMemoryChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
memory = InMemoryChatMessageHistory()
chain = RunnableWithMessageHistory(llm, lambda: memory)

chain.invoke("Hi I'm Bob")  # Hello Bob!
chain.invoke("What is my name?")  # Your name is Bob.
```
2024-07-22 10:36:53 -04:00
Nuno Campos
947628311b
core[patch]: Accept configurable keys top-level (#23806)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-07-20 03:49:00 +00:00
Will Badart
74e3d796f1
core[patch]: ensure iterator_ in scope for _atransform_stream_with_config except (#24454)
Before, if an exception was raised in the outer `try` block in
`Runnable._atransform_stream_with_config` before `iterator_` is
assigned, the corresponding `finally` block would blow up with an
`UnboundLocalError`:

```txt
UnboundLocalError: cannot access local variable 'iterator_' where it is not associated with a value
```

By assigning an initial value to `iterator_` before entering the `try`
block, this commit ensures that the `finally` can run, and not bury the
"true" exception under a "During handling of the above exception [...]"
traceback.

Thanks for your consideration!
2024-07-20 03:24:04 +00:00
Eugene Yurtsev
5e48f35fba
core[minor]: Relax constraints on type checking for tools and parsers (#24459)
This will allow tools and parsers to accept pydantic models from any of
the
following namespaces:

* pydantic.BaseModel with pydantic 1
* pydantic.BaseModel with pydantic 2
* pydantic.v1.BaseModel with pydantic 2
2024-07-19 21:47:34 -04:00
Eun Hye Kim
9aae8ef416
core[patch]: Fix utils.json_schema.dereference_refs (#24335 KeyError: 400 in JSON schema processing) (#24337)
Description:
This PR fixes a KeyError: 400 that occurs in the JSON schema processing
within the reduce_openapi_spec function. The _retrieve_ref function in
json_schema.py was modified to handle missing components gracefully by
continuing to the next component if the current one is not found. This
ensures that the OpenAPI specification is fully interpreted and the
agent executes without errors.

Issue:
Fixes issue #24335

Dependencies:
No additional dependencies are required for this change.

Twitter handle:
@lunara_x
2024-07-19 13:31:00 -04:00
Erick Friis
ef049769f0
core[patch]: Release 0.2.22 (#24423)
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-19 09:09:24 -07:00
Bagatur
cd19ba9a07
core[patch]: core lint fix (#24447) 2024-07-19 09:01:22 -07:00
Nuno Campos
62b6965d2a
core: In ensure_config don't copy dunder configurable keys to metadata (#24420) 2024-07-18 22:28:52 +00:00
Eugene Yurtsev
ef22ebe431
standard-tests[patch]: Add pytest assert rewrites (#24408)
This will surface nice error messages in subclasses that fail assertions.
2024-07-18 21:41:11 +00:00
Eugene Yurtsev
f62b323108
core[minor]: Support all versions of pydantic base model in argsschema (#24418)
This adds support to any pydantic base model for tools.

The only potential issue is that `get_input_schema()` will not always
return a v1 base model.
2024-07-18 17:14:23 -04:00
Eugene Yurtsev
570566b858
core[patch]: Update API reference for astream events (#24359)
Update the API reference for astream events to include information about
custom events.
2024-07-17 21:48:53 -04:00
Bagatur
a4c101ae97
core[patch]: Release 0.2.21 (#24372) 2024-07-17 22:44:35 +00:00
William FH
c5a07e2dd8
core[patch]: add InjectedToolArg annotation (#24279)
```python
from typing_extensions import Annotated
from langchain_core.tools import tool, InjectedToolArg
from langchain_anthropic import ChatAnthropic

@tool
def multiply(x: int, y: int, not_for_model: Annotated[dict, InjectedToolArg]) -> str:
    """multiply."""
    return x * y 

ChatAnthropic(model='claude-3-sonnet-20240229',).bind_tools([multiply]).invoke('5 times 3').tool_calls
'''
-> [{'name': 'multiply',
  'args': {'x': 5, 'y': 3},
  'id': 'toolu_01Y1QazYWhu4R8vF4hF4z9no',
  'type': 'tool_call'}]
'''
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-07-17 15:28:40 -07:00
Eugene Yurtsev
96bac8e20d
core[patch]: Fix regression requiring input_variables in few chat prompt templates (#24360)
* Fix regression that requires users passing input_variables=[].

* Regression introduced by my own changes to this PR:
https://github.com/langchain-ai/langchain/pull/22851
2024-07-17 18:14:57 -04:00
Eugene Yurtsev
9e4a0e76f6
core[patch]: Fix one unit test for chat prompt template (#24362)
Minor change that fixes a unit test that had missing assertions.
2024-07-17 18:56:48 +00:00
Bagatur
80e7cd6cff
core[patch]: Release 0.2.20 (#24322) 2024-07-16 15:04:36 -07:00
Eugene Yurtsev
616196c620
Docs: Add how to dispatch custom callback events (#24278)
* Add how-to guide for dispatching custom callback events.
* Add links from index to the how to guide
* Add link from streaming from within a tool
* Update versionadded to correct release
https://github.com/langchain-ai/langchain/releases/tag/langchain-core%3D%3D0.2.15
2024-07-16 17:38:32 -04:00