core[minor]: Support all versions of pydantic base model in argsschema (#24418)

This adds support to any pydantic base model for tools.

The only potential issue is that `get_input_schema()` will not always
return a v1 base model.
This commit is contained in:
Eugene Yurtsev 2024-07-18 17:14:23 -04:00 committed by GitHub
parent b2bc15e640
commit f62b323108
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 342 additions and 33 deletions

View File

@ -42,11 +42,10 @@ from typing import (
Tuple,
Type,
Union,
cast,
get_type_hints,
)
from typing_extensions import Annotated, get_args, get_origin
from typing_extensions import Annotated, cast, get_args, get_origin
from langchain_core._api import deprecated
from langchain_core.callbacks import (
@ -89,6 +88,10 @@ from langchain_core.runnables.config import (
run_in_executor,
)
from langchain_core.runnables.utils import accepts_context
from langchain_core.utils.pydantic import (
_create_subset_model,
is_basemodel_subclass,
)
FILTERED_ARGS = ("run_manager", "callbacks")
@ -110,34 +113,6 @@ def _get_annotation_description(arg_type: Type) -> str | None:
return None
def _create_subset_model(
name: str,
model: Type[BaseModel],
field_names: list,
*,
descriptions: Optional[dict] = None,
fn_description: Optional[str] = None,
) -> Type[BaseModel]:
"""Create a pydantic model with only a subset of model's fields."""
fields = {}
for field_name in field_names:
field = model.__fields__[field_name]
t = (
# this isn't perfect but should work for most functions
field.outer_type_
if field.required and not field.allow_none
else Optional[field.outer_type_]
)
if descriptions and field_name in descriptions:
field.field_info.description = descriptions[field_name]
fields[field_name] = (t, field.field_info)
rtn = create_model(name, **fields) # type: ignore
rtn.__doc__ = textwrap.dedent(fn_description or model.__doc__ or "")
return rtn
def _get_filtered_args(
inferred_model: Type[BaseModel],
func: Callable,
@ -403,6 +378,16 @@ class ChildTool(BaseTool):
two-tuple corresponding to the (content, artifact) of a ToolMessage.
"""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the tool."""
if "args_schema" in kwargs and kwargs["args_schema"] is not None:
if not is_basemodel_subclass(kwargs["args_schema"]):
raise TypeError(
f"args_schema must be a subclass of pydantic BaseModel. "
f"Got: {kwargs['args_schema']}."
)
super().__init__(**kwargs)
class Config(Serializable.Config):
"""Configuration for this pydantic object."""

View File

@ -1,7 +1,11 @@
"""Utilities for tests."""
from __future__ import annotations
import inspect
import textwrap
from functools import wraps
from typing import Any, Callable, Dict, Type
from typing import Any, Callable, Dict, List, Optional, Type
from langchain_core.pydantic_v1 import BaseModel, root_validator
@ -19,6 +23,66 @@ def get_pydantic_major_version() -> int:
PYDANTIC_MAJOR_VERSION = get_pydantic_major_version()
def is_basemodel_subclass(cls: Type) -> bool:
"""Check if the given class is a subclass of Pydantic BaseModel.
Check if the given class is a subclass of any of the following:
* pydantic.BaseModel in Pydantic 1.x
* pydantic.BaseModel in Pydantic 2.x
* pydantic.v1.BaseModel in Pydantic 2.x
"""
# Before we can use issubclass on the cls we need to check if it is a class
if not inspect.isclass(cls):
return False
if PYDANTIC_MAJOR_VERSION == 1:
from pydantic import BaseModel as BaseModelV1Proper
if issubclass(cls, BaseModelV1Proper):
return True
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic import BaseModel as BaseModelV2
from pydantic.v1 import BaseModel as BaseModelV1
if issubclass(cls, BaseModelV2):
return True
if issubclass(cls, BaseModelV1):
return True
else:
raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}")
return False
def is_basemodel_instance(obj: Any) -> bool:
"""Check if the given class is an instance of Pydantic BaseModel.
Check if the given class is an instance of any of the following:
* pydantic.BaseModel in Pydantic 1.x
* pydantic.BaseModel in Pydantic 2.x
* pydantic.v1.BaseModel in Pydantic 2.x
"""
if PYDANTIC_MAJOR_VERSION == 1:
from pydantic import BaseModel as BaseModelV1Proper
if isinstance(obj, BaseModelV1Proper):
return True
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic import BaseModel as BaseModelV2
from pydantic.v1 import BaseModel as BaseModelV1
if isinstance(obj, BaseModelV2):
return True
if isinstance(obj, BaseModelV1):
return True
else:
raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}")
return False
# How to type hint this?
def pre_init(func: Callable) -> Any:
"""Decorator to run a function before model initialization.
@ -64,3 +128,106 @@ def pre_init(func: Callable) -> Any:
return func(cls, values)
return wrapper
def _create_subset_model_v1(
name: str,
model: Type[BaseModel],
field_names: list,
*,
descriptions: Optional[dict] = None,
fn_description: Optional[str] = None,
) -> Type[BaseModel]:
"""Create a pydantic model with only a subset of model's fields."""
from langchain_core.pydantic_v1 import create_model
fields = {}
for field_name in field_names:
field = model.__fields__[field_name]
t = (
# this isn't perfect but should work for most functions
field.outer_type_
if field.required and not field.allow_none
else Optional[field.outer_type_]
)
if descriptions and field_name in descriptions:
field.field_info.description = descriptions[field_name]
fields[field_name] = (t, field.field_info)
rtn = create_model(name, **fields) # type: ignore
rtn.__doc__ = textwrap.dedent(fn_description or model.__doc__ or "")
return rtn
def _create_subset_model_v2(
name: str,
model: Type[BaseModel],
field_names: List[str],
*,
descriptions: Optional[dict] = None,
fn_description: Optional[str] = None,
) -> Type[BaseModel]:
"""Create a pydantic model with a subset of the model fields."""
from pydantic import create_model # pydantic: ignore
from pydantic.fields import FieldInfo # pydantic: ignore
descriptions_ = descriptions or {}
fields = {}
for field_name in field_names:
field = model.model_fields[field_name] # type: ignore
description = descriptions_.get(field_name, field.description)
fields[field_name] = (
field.annotation,
FieldInfo(description=description, default=field.default),
)
rtn = create_model(name, **fields) # type: ignore
rtn.__doc__ = textwrap.dedent(fn_description or model.__doc__ or "")
return rtn
# Private functionality to create a subset model that's compatible across
# different versions of pydantic.
# Handles pydantic versions 1.x and 2.x. including v1 of pydantic in 2.x.
# However, can't find a way to type hint this.
def _create_subset_model(
name: str,
model: Type[BaseModel],
field_names: List[str],
*,
descriptions: Optional[dict] = None,
fn_description: Optional[str] = None,
) -> Type[BaseModel]:
"""Create subset model using the same pydantic version as the input model."""
if PYDANTIC_MAJOR_VERSION == 1:
return _create_subset_model_v1(
name,
model,
field_names,
descriptions=descriptions,
fn_description=fn_description,
)
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
if issubclass(model, BaseModelV1):
return _create_subset_model_v1(
name,
model,
field_names,
descriptions=descriptions,
fn_description=fn_description,
)
else:
return _create_subset_model_v2(
name,
model,
field_names,
descriptions=descriptions,
fn_description=fn_description,
)
else:
raise NotImplementedError(
f"Unsupported pydantic version: {PYDANTIC_MAJOR_VERSION}"
)

View File

@ -31,10 +31,10 @@ from langchain_core.tools import (
StructuredTool,
Tool,
ToolException,
_create_subset_model,
tool,
)
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain_core.utils.pydantic import _create_subset_model
from tests.unit_tests.fake.callbacks import FakeCallbackHandler
@ -1417,3 +1417,112 @@ def test_tool_injected_arg_with_schema(tool_: BaseTool) -> None:
"required": ["x"],
},
}
def generate_models() -> List[Any]:
"""Generate a list of base models depending on the pydantic version."""
from pydantic import BaseModel as BaseModelProper # pydantic: ignore
class FooProper(BaseModelProper):
a: int
b: str
return [FooProper]
def generate_backwards_compatible_v1() -> List[Any]:
"""Generate a model with pydantic 2 from the v1 namespace."""
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
class FooV1Namespace(BaseModelV1):
a: int
b: str
return [FooV1Namespace]
# This generates a list of models that can be used for testing that our APIs
# behave well with either pydantic 1 proper,
# pydantic v1 from pydantic 2,
# or pydantic 2 proper.
TEST_MODELS = generate_models() + generate_backwards_compatible_v1()
@pytest.mark.parametrize("pydantic_model", TEST_MODELS)
def test_args_schema_as_pydantic(pydantic_model: Any) -> None:
class SomeTool(BaseTool):
args_schema: Type[pydantic_model] = pydantic_model
def _run(self, *args: Any, **kwargs: Any) -> str:
return "foo"
tool = SomeTool(
name="some_tool", description="some description", args_schema=pydantic_model
)
assert tool.get_input_schema().schema() == {
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": pydantic_model.__name__,
"type": "object",
}
assert tool.tool_call_schema.schema() == {
"description": "some description",
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": "some_tool",
"type": "object",
}
def test_args_schema_explicitly_typed() -> None:
"""This should test that one can type the args schema as a pydantic model.
Please note that this will test using pydantic 2 even though BaseTool
is a pydantic 1 model!
"""
# Check with whatever pydantic model is passed in and not via v1 namespace
from pydantic import BaseModel # pydantic: ignore
class Foo(BaseModel):
a: int
b: str
class SomeTool(BaseTool):
# type ignoring here since we're allowing overriding a type
# signature of pydantic.v1.BaseModel with pydantic.BaseModel
# for pydantic 2!
args_schema: Type[BaseModel] = Foo # type: ignore[assignment]
def _run(self, *args: Any, **kwargs: Any) -> str:
return "foo"
tool = SomeTool(name="some_tool", description="some description")
assert tool.get_input_schema().schema() == {
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": "Foo",
"type": "object",
}
assert tool.tool_call_schema.schema() == {
"description": "some description",
"properties": {
"a": {"title": "A", "type": "integer"},
"b": {"title": "B", "type": "string"},
},
"required": ["a", "b"],
"title": "some_tool",
"type": "object",
}

View File

@ -3,7 +3,12 @@
from typing import Any, Dict, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.pydantic import pre_init
from langchain_core.utils.pydantic import (
PYDANTIC_MAJOR_VERSION,
is_basemodel_instance,
is_basemodel_subclass,
pre_init,
)
def test_pre_init_decorator() -> None:
@ -73,3 +78,46 @@ def test_with_aliases() -> None:
foo = Foo(y=2) # type: ignore
assert foo.x == 2
assert foo.z == 2
def test_is_basemodel_subclass() -> None:
"""Test pydantic."""
if PYDANTIC_MAJOR_VERSION == 1:
from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore
assert is_basemodel_subclass(BaseModelV1Proper)
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic import BaseModel as BaseModelV2 # pydantic: ignore
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
assert is_basemodel_subclass(BaseModelV2)
assert is_basemodel_subclass(BaseModelV1)
else:
raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}")
def test_is_basemodel_instance() -> None:
"""Test pydantic."""
if PYDANTIC_MAJOR_VERSION == 1:
from pydantic import BaseModel as BaseModelV1Proper # pydantic: ignore
class FooV1(BaseModelV1Proper):
x: int
assert is_basemodel_instance(FooV1(x=5))
elif PYDANTIC_MAJOR_VERSION == 2:
from pydantic import BaseModel as BaseModelV2 # pydantic: ignore
from pydantic.v1 import BaseModel as BaseModelV1 # pydantic: ignore
class Foo(BaseModelV2):
x: int
assert is_basemodel_instance(Foo(x=5))
class Bar(BaseModelV1):
x: int
assert is_basemodel_instance(Bar(x=5))
else:
raise ValueError(f"Unsupported Pydantic version: {PYDANTIC_MAJOR_VERSION}")