**Description**: `zip` is iterator that will only produce result once,
so the previous code will cause the `embeddings` to be an empty list.
**Issue**: I could not find a related issue.
**Dependencies**: this PR does not introduce or affect dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** docs update following the changes introduced in
#15879
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR:
1. Add `metadata[_job_ib]` in Document returned by any similarity search
2. Add `explore_job_stats` to enable users to explore job statistics and
better the debuggability
3. Set the minimum row limit for running create vector index.
## Description
In this update, I addressed the missing implementation for
atransform_document, which is the asynchronous counterpart of
transform_document in Doctran.
### Usage Example:
```py
# Instantiate DoctranPropertyExtractor with specified properties
property_extractor = DoctranPropertyExtractor(properties=properties)
# Asynchronously extract properties from a list of documents
extracted_document = await property_extractor.atransform_documents(
documents, properties=properties
)
# Display metadata of the first extracted document
print(json.dumps(extracted_document[0].metadata, indent=2))
```
## Issue
- Pull request #14525 has caused a break in the aforementioned code.
Instead of removing an asynchronous implementation of a function,
consider implementing a synchronous version alongside it.
- **Description:** Added parenthesis in return statement of
aembed_query() funtion to fix 'coroutine' object is not subscriptable
error.
- **Dependencies:** NA
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
## Feature
- Follow parameter structure as per official documentation
- top level parameters (e.g. model, system, template) will be passed as
top level parameters
- other parameters will be sent in options unless options is provided
![image](https://github.com/langchain-ai/langchain/assets/17451563/d14715d9-9701-4ee3-b44b-89fffea62389)
## Tests
- Test if top level parameters handled properly
- Test if parameters that are not top level parameters are handled as
options
- Test if options is provided, it will be passed as is
**Description:** Added the new gpt-3.5-turbo-1106 for **finetuned** cost
calculation,
**Issue:** no issue found open
By the information in OpenAI the pricing is the same as the older model
(0613)
- vertex chat
- google
- some pip openai
- percent and openai
- all percent
- more
- pip
- fmt
- docs: google vertex partner docs
- fmt
- docs: more pip installs
- **Description:** Added a `PolygonAPIWrapper` and an initial
`get_last_quote` endpoint, which allows us to get the last price quote
for a given `ticker`. Once merged, I can add a Polygon tool in `tools/`
for agents to use.
- **Twitter handle:** [@virattt](https://twitter.com/virattt)
The Polygon.io Stocks API provides REST endpoints that let you query the
latest market data from all US stock exchanges.
Support [Lantern](https://github.com/lanterndata/lantern) as a new
VectorStore type.
- Added Lantern as VectorStore.
It will support 3 distance functions `l2 squared`, `cosine` and
`hamming` and will use `HNSW` index.
- Added tests
- Added example notebook
**Description**: the "page" mode in the
AzureAIDocumentIntelligenceParser is not accessible due to a wrong
membership test. The mode argument can only be a string (also see the
assertion in the `__init__`: `assert self.mode in ["single", "page",
"object", "markdown"]`, so the check `elif self.mode == ["page"]:`
always fails.
As a result, effectively the "object" mode is used when selecting the
"page" mode, which may lead to errors.
The docstring of the `AzureAIDocumentIntelligenceLoader` also ommitted
the `mode` parameter alltogether, so I added it.
**Issue**: I could not find a related issue (this class is only 3 weeks
old anyways)
**Dependencies**: this PR does not introduce or affect dependencies.
The current demo notebook and examples are not affected because they all
use the default markdown mode.
- **Description:** Azure Cognitive Search vector DB store performs slow
embedding as it does not utilize the batch embedding functionality. This
PR provide a fix to improve the performance of Azure Search class when
adding documents to the vector search,
- **Issue:** #11313 ,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Remove section on how to install Action Server and direct the users t o
the instructions on Robocorp repository.
**Reason:**
Robocorp Action Server has moved from a pip installation to a standalone
cli application and is due for changes. Because of that, leaving only
LangChain integration relevant part in the documentation.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** Milvus's partition key is an important feature. It
can support multi-tenancy. We hope to introduce this feature.
https://milvus.io/docs/partition_key.md
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** No
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Add support for end_point and transport parameters to the Gemini API
---------
Co-authored-by: yangenfeng <yangenfeng@xiaoniangao.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Added aembed_documents() and aembed_query() async functions in
HuggingFaceHubEmbeddings class in
langchain_community\embeddings\huggingface_hub.py file. It will support
to make async calls to HuggingFaceHub's
embedding endpoint and generate embeddings asynchronously.
Test Cases: Added test_huggingfacehub_embedding_async_documents() and
test_huggingfacehub_embedding_async_query()
functions in test_huggingface_hub.py file to test the two async
functions created in HuggingFaceHubEmbeddings class.
Documentation: Updated huggingfacehub.ipynb with steps to install
huggingface_hub package and use
HuggingFaceHubEmbeddings.
**Dependencies:** None,
**Twitter handle:** I do not have a Twitter account
---------
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
- **Description:** This PR defines the output parser of
OpenAIFunctionsAgent as an attribute, enabling customization and
subclassing of the parser logic.
- **Issue:** Subclassing is currently impossible as the
`OpenAIFunctionsAgentOutputParser` class is hard coded into the `plan`
and `aplan` methods
- **Dependencies:** None
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
## Feature
- Set additional headers in constructor
- Headers will be sent in post request
This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.
## Tests
- Test if header is passed
- Test if header is not passed
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Major changes:
- Rename `wasm_chat.py` to `llama_edge.py`
- Rename the `WasmChatService` class to `ChatService`
- Implement the `stream` interface for `ChatService`
- Add `test_chat_wasm_service_streaming` in the integration test
- Update `llama_edge.ipynb`
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
- **Description:** `AmadeusToolkit` and `AmadeusClosestAirport`
contained a hardcoded call to `ChatOpenAI`. This PR makes it
LLM-independent, while guaranteeing backward compatibility.
- **Issue:** #15847
- **Dependencies:** None
@baskaryan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
**Description:**
Fixes OutputParserException thrown by the output_parser when 'query' is
'Null'.
Replace this entire comment with:
- **Description:** Current implentation of output_parser throws
OutputParserException if the response from the LLM contains `query:
null`. This unfortunately happens for my use case. And since there is no
way to modify the prompt used in SelfQueryRetriever, then we have to fix
it here, so it doesn't crash.
- **Issue:** https://github.com/langchain-ai/langchain/issues/15914
Didn't run tests. `make test` is not working. There is no `test` rule in
the `Makefile`.
Co-authored-by: Jan Horcicka <jhorcick@amazon.com>
- **Description:** The pinecone docstring instructs to pass the
embedding query text causing the warning below. It should be the
embeddings object.
warning message: UserWarning: Passing in `embedding` as a Callable is
deprecated. Please pass in an Embeddings object instead.
- **Issue:** NA
- **Dependencies:** None
@baskaryan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>