The return type of `json.loads` is `Any`.
In fact, the return type of `dumpd` must be based on `json.loads`, so
the correction here is understandable.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Currently, calling `with_structured_output()` with an invalid method
argument raises `Unrecognized method argument. Expected one of
'function_calling' or 'json_format'`, but the JSON mode option [is now
referred
to](https://python.langchain.com/v0.2/docs/how_to/structured_output/#the-with_structured_output-method)
by `'json_mode'`. This fixes that.
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Add optional max_messages to MessagePlaceholder
- **Issue:**
[16096](https://github.com/langchain-ai/langchain/issues/16096)
- **Dependencies:** None
- **Twitter handle:** @davedecaprio
Sometimes it's better to limit the history in the prompt itself rather
than the memory. This is needed if you want different prompts in the
chain to have different history lengths.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Thank you for contributing to LangChain!
**Description**
The current code snippet for `Fireworks` had incorrect parameters. This
PR fixes those parameters.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Moved doc-strings below attribtues in TypedDicts -- seems to render
better on APIReference pages.
* Provided more description and some simple code examples
- **Description:** Restores compatibility with SQLAlchemy 1.4.x that was
broken since #18992 and adds a test run for this version on CI (only for
Python 3.11)
- **Issue:** fixes#19681
- **Dependencies:** None
- **Twitter handle:** `@krassowski_m`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** sambanova sambaverse integration improvement: removed
input parsing that was changing raw user input, and was making to use
process prompt parameter as true mandatory
**Description:** `astream_events(version="v2")` didn't propagate
exceptions in `langchain-core<=0.2.6`, fixed in the #22916. This PR adds
a unit test to check that exceptions are propagated upwards.
Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
This raises ImportError due to a circular import:
```python
from langchain_core import chat_history
```
This does not:
```python
from langchain_core import runnables
from langchain_core import chat_history
```
Here we update `test_imports` to run each import in a separate
subprocess. Open to other ways of doing this!
Tests failing on master with
> FAILED
tests/unit_tests/embeddings/test_ovhcloud.py::test_ovhcloud_embed_documents
- ValueError: Request failed with status code: 401, {"message":"Bad
token; invalid JSON"}
Thank you for contributing to LangChain!
**Description:** Noticed an issue with when I was calling
`RecursiveJsonSplitter().split_json()` multiple times that I was getting
weird results. I found an issue where `chunks` list in the `_json_split`
method. If chunks is not provided when _json_split (which is the case
when split_json calls _json_split) then the same list is used for
subsequent calls to `_json_split`.
You can see this in the test case i also added to this commit.
Output should be:
```
[{'a': 1, 'b': 2}]
[{'c': 3, 'd': 4}]
```
Instead you get:
```
[{'a': 1, 'b': 2}]
[{'a': 1, 'b': 2, 'c': 3, 'd': 4}]
```
---------
Co-authored-by: Nuno Campos <nuno@langchain.dev>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
- **Description:** add `**request_kwargs` and expect `TimeError` in
`_fetch` function for AsyncHtmlLoader. This allows you to fill in the
kwargs parameter when using the `load()` method of the `AsyncHtmlLoader`
class.
Co-authored-by: Yucolu <yucolu@tencent.com>
#### Description
This MR defines a `ExperimentalMarkdownSyntaxTextSplitter` class. The
main goal is to replicate the functionality of the original
`MarkdownHeaderTextSplitter` which extracts the header stack as metadata
but with one critical difference: it keeps the whitespace of the
original text intact.
This draft reimplements the `MarkdownHeaderTextSplitter` with a very
different algorithmic approach. Instead of marking up each line of the
text individually and aggregating them back together into chunks, this
method builds each chunk sequentially and applies the metadata to each
chunk. This makes the implementation simpler. However, since it's
designed to keep white space intact its not a full drop in replacement
for the original. Since it is a radical implementation change to the
original code and I would like to get feedback to see if this is a
worthwhile replacement, should be it's own class, or is not a good idea
at all.
Note: I implemented the `return_each_line` parameter but I don't think
it's a necessary feature. I'd prefer to remove it.
This implementation also adds the following additional features:
- Splits out code blocks and includes the language in the `"Code"`
metadata key
- Splits text on the horizontal rule `---` as well
- The `headers_to_split_on` parameter is now optional - with sensible
defaults that can be overridden.
#### Issue
Keeping the whitespace keeps the paragraphs structure and the formatting
of the code blocks intact which allows the caller much more flexibility
in how they want to further split the individuals sections of the
resulting documents. This addresses the issues brought up by the
community in the following issues:
- https://github.com/langchain-ai/langchain/issues/20823
- https://github.com/langchain-ai/langchain/issues/19436
- https://github.com/langchain-ai/langchain/issues/22256
#### Dependencies
N/A
#### Twitter handle
@RyanElston
---------
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
# Description
This pull request aims to address specific issues related to the
ambiguity and error-proneness of the output types of certain output
parsers, as well as the absence of unit tests for some parsers. These
issues could potentially lead to runtime errors or unexpected behaviors
due to type mismatches when used, causing confusion for developers and
users. Through clarifying output types, this PR seeks to improve the
stability and reliability.
Therefore, this pull request
- fixes the `OutputType` of OutputParsers to be the expected type;
- e.g. `OutputType` property of `EnumOutputParser` raises `TypeError`.
This PR introduce a logic to extract `OutputType` from its attribute.
- and fixes the legacy API in OutputParsers like `LLMChain.run` to the
modern API like `LLMChain.invoke`;
- Note: For `OutputFixingParser`, `RetryOutputParser` and
`RetryWithErrorOutputParser`, this PR introduces `legacy` attribute with
False as default value in order to keep the backward compatibility
- and adds the tests for the `OutputFixingParser` and
`RetryOutputParser`.
The following table shows my expected output and the actual output of
the `OutputType` of OutputParsers.
I have used this table to fix `OutputType` of OutputParsers.
| Class Name of OutputParser | My Expected `OutputType` (after this PR)|
Actual `OutputType` [evidence](#evidence) (before this PR)| Fix Required
|
|---------|--------------|---------|--------|
| BooleanOutputParser | `<class 'bool'>` | `<class 'bool'>` | NO |
| CombiningOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| DatetimeOutputParser | `<class 'datetime.datetime'>` | `<class
'datetime.datetime'>` | NO |
| EnumOutputParser(enum=MyEnum) | `MyEnum` | `TypeError` is raised | YES
|
| OutputFixingParser | The same type as `self.parser.OutputType` | `~T`
| YES |
| CommaSeparatedListOutputParser | `typing.List[str]` |
`typing.List[str]` | NO |
| MarkdownListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| NumberedListOutputParser | `typing.List[str]` | `typing.List[str]` |
NO |
| JsonOutputKeyToolsParser | `typing.Any` | `typing.Any` | NO |
| JsonOutputToolsParser | `typing.Any` | `typing.Any` | NO |
| PydanticToolsParser | `typing.Any` | `typing.Any` | NO |
| PandasDataFrameOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| PydanticOutputParser(pydantic_object=MyModel) | `<class
'__main__.MyModel'>` | `<class '__main__.MyModel'>` | NO |
| RegexParser | `typing.Dict[str, str]` | `TypeError` is raised | YES |
| RegexDictParser | `typing.Dict[str, str]` | `TypeError` is raised |
YES |
| RetryOutputParser | The same type as `self.parser.OutputType` | `~T` |
YES |
| RetryWithErrorOutputParser | The same type as `self.parser.OutputType`
| `~T` | YES |
| StructuredOutputParser | `typing.Dict[str, Any]` | `TypeError` is
raised | YES |
| YamlOutputParser(pydantic_object=MyModel) | `MyModel` | `~T` | YES |
NOTE: In "Fix Required", "YES" means that it is required to fix in this
PR while "NO" means that it is not required.
# Issue
No issues for this PR.
# Twitter handle
- [hmdev3](https://twitter.com/hmdev3)
# Questions:
1. Is it required to create tests for legacy APIs `LLMChain.run` in the
following scripts?
- libs/langchain/tests/unit_tests/output_parsers/test_fix.py;
- libs/langchain/tests/unit_tests/output_parsers/test_retry.py.
2. Is there a more appropriate expected output type than I expect in the
above table?
- e.g. the `OutputType` of `CombiningOutputParser` should be
SOMETHING...
# Actual outputs (before this PR)
<div id='evidence'></div>
<details><summary>Actual outputs</summary>
## Requirements
- Python==3.9.13
- langchain==0.1.13
```python
Python 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022, 16:36:42) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import langchain
>>> langchain.__version__
'0.1.13'
>>> from langchain import output_parsers
```
### `BooleanOutputParser`
```python
>>> output_parsers.BooleanOutputParser().OutputType
<class 'bool'>
```
### `CombiningOutputParser`
```python
>>> output_parsers.CombiningOutputParser(parsers=[output_parsers.DatetimeOutputParser(), output_parsers.CommaSeparatedListOutputParser()]).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable CombiningOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `DatetimeOutputParser`
```python
>>> output_parsers.DatetimeOutputParser().OutputType
<class 'datetime.datetime'>
```
### `EnumOutputParser`
```python
>>> from enum import Enum
>>> class MyEnum(Enum):
... a = 'a'
... b = 'b'
...
>>> output_parsers.EnumOutputParser(enum=MyEnum).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable EnumOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `OutputFixingParser`
```python
>>> output_parsers.OutputFixingParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `CommaSeparatedListOutputParser`
```python
>>> output_parsers.CommaSeparatedListOutputParser().OutputType
typing.List[str]
```
### `MarkdownListOutputParser`
```python
>>> output_parsers.MarkdownListOutputParser().OutputType
typing.List[str]
```
### `NumberedListOutputParser`
```python
>>> output_parsers.NumberedListOutputParser().OutputType
typing.List[str]
```
### `JsonOutputKeyToolsParser`
```python
>>> output_parsers.JsonOutputKeyToolsParser(key_name='tool').OutputType
typing.Any
```
### `JsonOutputToolsParser`
```python
>>> output_parsers.JsonOutputToolsParser().OutputType
typing.Any
```
### `PydanticToolsParser`
```python
>>> from langchain.pydantic_v1 import BaseModel
>>> class MyModel(BaseModel):
... a: int
...
>>> output_parsers.PydanticToolsParser(tools=[MyModel, MyModel]).OutputType
typing.Any
```
### `PandasDataFrameOutputParser`
```python
>>> output_parsers.PandasDataFrameOutputParser().OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable PandasDataFrameOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `PydanticOutputParser`
```python
>>> output_parsers.PydanticOutputParser(pydantic_object=MyModel).OutputType
<class '__main__.MyModel'>
```
### `RegexParser`
```python
>>> output_parsers.RegexParser(regex='$', output_keys=['a']).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable RegexParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `RegexDictParser`
```python
>>> output_parsers.RegexDictParser(output_key_to_format={'a':'a'}).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable RegexDictParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `RetryOutputParser`
```python
>>> output_parsers.RetryOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `RetryWithErrorOutputParser`
```python
>>> output_parsers.RetryWithErrorOutputParser(parser=output_parsers.DatetimeOutputParser()).OutputType
~T
```
### `StructuredOutputParser`
```python
>>> from langchain.output_parsers.structured import ResponseSchema
>>> response_schemas = [ResponseSchema(name="foo",description="a list of strings",type="List[string]"),ResponseSchema(name="bar",description="a string",type="string"), ]
>>> output_parsers.StructuredOutputParser.from_response_schemas(response_schemas).OutputType
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "D:\workspace\venv\lib\site-packages\langchain_core\output_parsers\base.py", line 160, in OutputType
raise TypeError(
TypeError: Runnable StructuredOutputParser doesn't have an inferable OutputType. Override the OutputType property to specify the output type.
```
### `YamlOutputParser`
```python
>>> output_parsers.YamlOutputParser(pydantic_object=MyModel).OutputType
~T
```
<div>
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>