Commit Graph

332 Commits

Author SHA1 Message Date
Anthony Mahanna
0a04e63811
docs: Update ArangoDB Links (#9251)
ready for review 

- mdx link update
- colab link update
2023-08-15 07:43:47 -07:00
Hech
4b505060bd
fix: max_marginal_relevance_search and docs in Dingo (#9244) 2023-08-15 01:06:06 -07:00
axiangcoding
664ff28cba
feat(llms): support ernie chat (#9114)
Description: support ernie (文心一言) chat model
Related issue: #7990
Dependencies: None
Tag maintainer: @baskaryan
2023-08-15 01:05:46 -07:00
fanyou-wbd
5e43768f61
docs: update LlamaCpp max_tokens args (#9238)
This PR updates documentations only, `max_length` should be `max_tokens`
according to latest LlamaCpp API doc:
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
2023-08-15 00:50:20 -07:00
Joshua Sundance Bailey
ef0664728e
ArcGISLoader update (#9240)
Small bug fixes and added metadata based on user feedback. This PR is
from the author of https://github.com/langchain-ai/langchain/pull/8873 .
2023-08-14 23:44:29 -07:00
Joseph McElroy
eac4ddb4bb
Elasticsearch Store Improvements (#8636)
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support 
- [x] Metadata support
  - [x] Metadata Filter support 
- [x] Retrieval Strategies
  - [x] Approx
  - [x] Approx with Hybrid
  - [x] Exact
  - [x] Custom 
  - [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests 
- [x] Documentation

👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:

## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.

```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch

## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```

## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.

With `ElasticsearchStore` we have retrieval strategies:

### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index"
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.

This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(
                query_model_id="sentence-transformers__all-minilm-l6-v2"
            ),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`

```py
        def my_custom_query(query_body: dict, query: str) -> dict:
            return {"query": {"match": {"text": {"query": "bar"}}}}

        texts = ["foo", "bar", "baz"]
        docsearch = ElasticsearchStore.from_texts(
            texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
        )
        docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)

```

### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ExactRetrievalStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.

```py
texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.SparseVectorStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)

```

## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.

## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 23:42:35 -07:00
Lance Martin
17ae2998e7
Update Ollama docs (#9220)
Based on discussion w/ team.
2023-08-14 13:56:16 -07:00
Krish Dholakia
49f1d8477c
Adding ChatLiteLLM model (#9020)
Description: Adding a langchain integration for the LiteLLM library 
Tag maintainer: @hwchase17, @baskaryan
Twitter handle: @krrish_dh / @Berri_AI

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 07:43:40 -07:00
Emmanuel Gautier
f11e5442d6
docs: update LlamaCpp input args (#9173)
This PR only updates the LlamaCpp args documentation. The input arg has
been flattened.
2023-08-14 07:42:03 -07:00
Massimiliano Pronesti
d95eeaedbe
feat(llms): support vLLM's OpenAI-compatible server (#9179)
This PR aims at supporting [vLLM's OpenAI-compatible server
feature](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html#openai-compatible-server),
i.e. allowing to call vLLM's LLMs like if they were OpenAI's.

I've also udpated the related notebook providing an example usage. At
the moment, vLLM only supports the `Completion` API.
2023-08-13 23:03:05 -07:00
Michael Goin
621da3c164
Adds DeepSparse as an LLM (#9184)
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.

Twitter handles: @mgoin_ @neuralmagic


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-13 22:35:58 -07:00
Bagatur
0fa69d8988
Bagatur/zep python 1.0 (#9186)
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
2023-08-13 21:52:53 -07:00
Bagatur
45741bcc1b
Bagatur/vectara nit (#9140)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
2023-08-11 15:32:03 -07:00
Dominick DEV
9b64932e55
Add LangChain utility for real-time crypto exchange prices (#4501)
This commit adds the LangChain utility which allows for the real-time
retrieval of cryptocurrency exchange prices. With LangChain, users can
easily access up-to-date pricing information by running the command
".run(from_currency, to_currency)". This new feature provides a
convenient way to stay informed on the latest exchange rates and make
informed decisions when trading crypto.


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 14:45:06 -07:00
Joshua Sundance Bailey
eaa505fb09
Create ArcGISLoader & example notebook (#8873)
- Description: Adds the ArcGISLoader class to
`langchain.document_loaders`
  - Allows users to load data from ArcGIS Online, Portal, and similar
- Users can authenticate with `arcgis.gis.GIS` or retrieve public data
anonymously
  - Uses the `arcgis.features.FeatureLayer` class to retrieve the data
  - Defines the most relevant keywords arguments and accepts `**kwargs`
- Dependencies: Using this class requires `arcgis` and, optionally,
`bs4.BeautifulSoup`.

Tagging maintainers:
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 14:33:40 -07:00
Hai The Dude
e4418d1b7e
Added new use case docs for Web Scraping, Chromium loader, BS4 transformer (#8732)
- Description: Added a new use case category called "Web Scraping", and
a tutorial to scrape websites using OpenAI Functions Extraction chain to
the docs.
  - Tag maintainer:@baskaryan @hwchase17 ,
- Twitter handle: https://www.linkedin.com/in/haiphunghiem/ (I'm on
LinkedIn mostly)

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-11 11:46:59 -07:00
niklub
16af5f8690
Add LabelStudio integration (#8880)
This PR introduces [Label Studio](https://labelstud.io/) integration
with LangChain via `LabelStudioCallbackHandler`:

- sending data to the Label Studio instance
- labeling dataset for supervised LLM finetuning
- rating model responses
- tracking and displaying chat history
- support for custom data labeling workflow

### Example

```
chat_llm = ChatOpenAI(callbacks=[LabelStudioCallbackHandler(mode="chat")])
chat_llm([
    SystemMessage(content="Always use emojis in your responses."),
        HumanMessage(content="Hey AI, how's your day going?"),
    AIMessage(content="🤖 I don't have feelings, but I'm running smoothly! How can I help you today?"),
        HumanMessage(content="I'm feeling a bit down. Any advice?"),
    AIMessage(content="🤗 I'm sorry to hear that. Remember, it's okay to seek help or talk to someone if you need to. 💬"),
        HumanMessage(content="Can you tell me a joke to lighten the mood?"),
    AIMessage(content="Of course! 🎭 Why did the scarecrow win an award? Because he was outstanding in his field! 🌾"),
        HumanMessage(content="Haha, that was a good one! Thanks for cheering me up."),
    AIMessage(content="Always here to help! 😊 If you need anything else, just let me know."),
        HumanMessage(content="Will do! By the way, can you recommend a good movie?"),
])
```

<img width="906" alt="image"
src="https://github.com/langchain-ai/langchain/assets/6087484/0a1cf559-0bd3-4250-ad96-6e71dbb1d2f3">


### Dependencies
- [label-studio](https://pypi.org/project/label-studio/)
- [label-studio-sdk](https://pypi.org/project/label-studio-sdk/)

https://twitter.com/labelstudiohq

---------

Co-authored-by: nik <nik@heartex.net>
2023-08-11 11:24:10 -07:00
Bagatur
8cb2594562
Bagatur/dingo (#9079)
Co-authored-by: gary <1625721671@qq.com>
2023-08-11 10:54:45 -07:00
Alvaro Bartolome
f7ae183f40
ArgillaCallbackHandler to properly use default values for api_url and api_key (#9113)
As of the recent PR at #9043, after some testing we've realised that the
default values were not being used for `api_key` and `api_url`. Besides
that, the default for `api_key` was set to `argilla.apikey`, but since
the default values are intended for people using the Argilla Quickstart
(easy to run and setup), the defaults should be instead `owner.apikey`
if using Argilla 1.11.0 or higher, or `admin.apikey` if using a lower
version of Argilla.

Additionally, we've removed the f-string replacements from the
docstrings.

---------

Co-authored-by: Gabriel Martin <gabriel@argilla.io>
2023-08-11 09:37:06 -07:00
Bagatur
0e5d09d0da
dalle nb fix (#9125) 2023-08-11 08:21:48 -07:00
Ashutosh Sanzgiri
991b448dfc
minor edits (#9093)
Description:

Minor edit to PR#845

Thanks!
2023-08-10 23:40:36 -07:00
Chenyu Zhao
c0acbdca1b
Update Fireworks model names (#9085) 2023-08-10 19:23:42 -07:00
Charles Lanahan
a2588d6c57
Update openai embeddings notebook with correct embedding model in section 2 (#5831)
In second section it looks like a copy/paste from the first section and
doesn't include the specific embedding model mentioned in the example so
I added it for clarity.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 19:02:10 -07:00
Josh Phillips
5fc07fa524
change id column type to uuid to match function (#7456)
The table creation process in these examples commands do not match what
the recently updated functions in these example commands is looking for.
This change updates the type in the table creation command.
Issue Number for my report of the doc problem #7446
@rlancemartin and @eyurtsev I believe this is your area
Twitter: @j1philli

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 16:57:19 -07:00
Bidhan Roy
02430e25b6
BagelDB (bageldb.ai), VectorStore integration. (#8971)
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.

  - **Issue**: Not applicable.
  - **Dependencies**: `betabageldb` PyPi package.
  - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
  - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
  
We ran `make format`, `make lint` and `make test` locally.

Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

---------

Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
2023-08-10 16:48:36 -07:00
Piyush Jain
8eea46ed0e
Bedrock embeddings async methods (#9024)
## Description
This PR adds the `aembed_query` and `aembed_documents` async methods for
improving the embeddings generation for large documents. The
implementation uses asyncio tasks and gather to achieve concurrency as
there is no bedrock async API in boto3.

### Maintainers
@agola11 
@aarora79  

### Open questions
To avoid throttling from the Bedrock API, should there be an option to
limit the concurrency of the calls?
2023-08-10 14:21:03 -07:00
Blake (Yung Cher Ho)
8d351bfc20
Takeoff integration (#9045)
## Description:
This PR adds the Titan Takeoff Server to the available LLMs in
LangChain.

Titan Takeoff is an inference server created by
[TitanML](https://www.titanml.co/) that allows you to deploy large
language models locally on your hardware in a single command. Most
generative model architectures are included, such as Falcon, Llama 2,
GPT2, T5 and many more.

Read more about Titan Takeoff here:
-
[Blog](https://medium.com/@TitanML/introducing-titan-takeoff-6c30e55a8e1e)
- [Docs](https://docs.titanml.co/docs/titan-takeoff/getting-started)

#### Testing
As Titan Takeoff runs locally on port 8000 by default, no network access
is needed. Responses are mocked for testing.

- [x] Make Lint
- [x] Make Format
- [x] Make Test

#### Dependencies
No new dependencies are introduced. However, users will need to install
the titan-iris package in their local environment and start the Titan
Takeoff inferencing server in order to use the Titan Takeoff
integration.

Thanks for your help and please let me know if you have any questions.

cc: @hwchase17 @baskaryan
2023-08-10 10:56:06 -07:00
Luca Foppiano
dfb93dd2b5
Improved grobid documentation (#9025)
- Description: Improvement in the Grobid loader documentation, typos and
suggesting to use the docker image instead of installing Grobid in local
(the documentation was also limited to Mac, while docker allow running
in any platform)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @whitenoise
2023-08-10 10:47:22 -04:00
Jerzy Czopek
539672a7fd
Feature/fix azureopenai model mappings (#8621)
This pull request aims to ensure that the `OpenAICallbackHandler` can
properly calculate the total cost for Azure OpenAI chat models. The
following changes have resolved this issue:

- The `model_name` has been added to the ChatResult llm_output. Without
this, the default values of `gpt-35-turbo` were applied. This was
causing the total cost for Azure OpenAI's GPT-4 to be significantly
inaccurate.
- A new parameter `model_version` has been added to `AzureChatOpenAI`.
Azure does not include the model version in the response. With the
addition of `model_name`, this is not a significant issue for GPT-4
models, but it's an issue for GPT-3.5-Turbo. Version 0301 (default) of
GPT-3.5-Turbo on Azure has a flat rate of 0.002 per 1k tokens for both
prompt and completion. However, version 0613 introduced a split in
pricing for prompt and completion tokens.
- The `OpenAICallbackHandler` implementation has been updated with the
proper model names, versions, and cost per 1k tokens.

Unit tests have been added to ensure the functionality works as
expected; the Azure ChatOpenAI notebook has been updated with examples.

Maintainers: @hwchase17, @baskaryan

Twitter handle: @jjczopek

---------

Co-authored-by: Jerzy Czopek <jerzy.czopek@avanade.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 10:56:15 -07:00
Taqi Jaffri
5919c0f4a2 notebook cleanup 2023-08-08 21:38:55 -07:00
Taqi Jaffri
bcdf3be530 Merge branch 'master' into tjaffri/docugami_loader_source 2023-08-08 20:59:13 -07:00
arjunbansal
a2681f950d
add instructions on integrating Log10 (#8938)
- Description: Instruction for integration with Log10: an [open
source](https://github.com/log10-io/log10) proxiless LLM data management
and application development platform that lets you log, debug and tag
your Langchain calls
  - Tag maintainer: @baskaryan
  - Twitter handle: @log10io @coffeephoenix

Several examples showing the integration included
[here](https://github.com/log10-io/log10/tree/main/examples/logging) and
in the PR
2023-08-08 19:15:31 -07:00
Aarav Borthakur
3f64b8a761
Integrate Rockset as a chat history store (#8940)
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17

This PR passes linting and testing. 

I added a test for the integration and an example notebook showing its
use.
2023-08-08 18:54:07 -07:00
Molly Cantillon
99b5a7226c
Weaviate: adding auth example + fixing spelling in ReadME (#8939)
Added basic auth example to Weaviate notebook @baskaryan
2023-08-08 16:24:17 -07:00
Joe Reuter
8f0cd91d57
Airbyte based loaders (#8586)
This PR adds 8 new loaders:
* `AirbyteCDKLoader` This reader can wrap and run all python-based
Airbyte source connectors.
* Separate loaders for the most commonly used APIs:
  * `AirbyteGongLoader`
  * `AirbyteHubspotLoader`
  * `AirbyteSalesforceLoader`
  * `AirbyteShopifyLoader`
  * `AirbyteStripeLoader`
  * `AirbyteTypeformLoader`
  * `AirbyteZendeskSupportLoader`

## Documentation and getting started
I added the basic shape of the config to the notebooks. This increases
the maintenance effort a bit, but I think it's worth it to make sure
people can get started quickly with these important connectors. This is
also why I linked the spec and the documentation page in the readme as
these two contain all the information to configure a source correctly
(e.g. it won't suggest using oauth if that's avoidable even if the
connector supports it).

## Document generation
The "documents" produced by these loaders won't have a text part
(instead, all the record fields are put into the metadata). If a text is
required by the use case, the caller needs to do custom transformation
suitable for their use case.

## Incremental sync
All loaders support incremental syncs if the underlying streams support
it. By storing the `last_state` from the reader instance away and
passing it in when loading, it will only load updated records.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 14:49:25 -07:00
Harrison Chase
7543a3d70e
Harrison/image (#845)
Co-authored-by: Ashutosh Sanzgiri <sanzgiri@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 13:58:27 -07:00
Leonid Ganeline
33a2f58fbf
tensoflow_datasets document loader (#8721)
This PR adds `tensoflow_datasets` document loader
2023-08-08 15:19:28 -04:00
Leonid Ganeline
2d078c7767
PubMed document loader (#8893)
- added `PubMed Document Loader` artifacts; ut-s; examples 
- fixed `PubMed utility`; ut-s

@hwchase17
2023-08-08 14:26:03 -04:00
Seif
6327eecdaf
Fix typo in Vectara docs (#8925)
Fixed a typo in the Vectara docs description.
2023-08-08 10:11:07 -07:00
David vonThenen
bf4a112aa6
Fixes to the Nebula LLM Integration (#8918)
This addresses some issues with introducing the Nebula LLM to LangChain
in this PR:
https://github.com/langchain-ai/langchain/pull/8876

This fixes the following:
- Removes `SYMBLAI` from variable names
- Fixes bug with `Bearer` for the API KEY


Thanks again in advance for your help!
cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
2023-08-08 10:04:43 -07:00
Josh Hart
6116cbf0de
Fix imports in awslambda docs (#8916)
Minor doc fix to awslambda tool notebook. 

Add missing import for initialize_agent to awslambda agent example

Co-authored-by: Josh Hart <josharj@amazon.com>
2023-08-08 08:29:28 -07:00
Maurits de Groot
61c2d918c6
Fixed inaccurate import in integrations:providers:bedrock documentation (#8915)
Description:
Fixed inaccurate import in integrations:providers:bedrock documentation

In the current version of the bedrock documentation, page
https://python.langchain.com/docs/integrations/providers/bedrock it
states that the import is from langchain import Bedrock

This has been changed to from langchain.llms.bedrock import Bedrock as
stated in https://python.langchain.com/docs/integrations/llms/bedrock

Issue:
Not applicable

Dependencies
No dependencies required

Tag maintainer
@baskaryan

Twitter handle:
Not applicable
2023-08-08 07:24:36 -07:00
Manuel Soria
e74a605379
SQL use case docs (#8513) 2023-08-08 03:30:18 -07:00
Jacob Lee
fa30a57034
Adds Ollama as an LLM (#8829)
Adds Ollama as an LLM. Ollama can run various open source models locally
e.g. Llama 2 and Vicuna, automatically configuring and GPU-optimizing
them.

@rlancemartin @hwchase17

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-07 21:19:22 -07:00
Ash Vardanian
1f9124ceaa
Add: USearch Vector Store (#8835)
## Description

I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.

## Dependencies

It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.

## Profiles

- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud

---------

Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 20:41:00 -07:00
Leonid Kuligin
b52a3785c9
Allow to specify a custom loader for GcsFileLoader (#8868)
Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-07 22:57:31 -04:00
Jeffrey Wang
ff44fe4e16
Change default Metaphor search example to use prompt optimizer (#8890)
- fix install command
- change example notebook to use Metaphor autoprompt by default

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-08-07 17:25:36 -07:00
Jeffrey Wang
ce3666c28b
Fix metaphor install command in guide (#8888) 2023-08-07 15:43:47 -07:00
Harrison Chase
bbd22b9b76
update metaphor docs (#8886) 2023-08-07 14:44:41 -07:00
Carson
cc908d49a3
Fixes typo in documentation (#8882)
Fixes a simple typo in the google search engine tool documentation
@baskaryan
2023-08-07 14:33:21 -07:00
Joshua Sundance Bailey
7fc07ba5df
Create ChatAnyscale (#8770)
- Description: Adds the ChatAnyscale class with llama-2 7b, llama-2 13b,
and llama-2 70b on [Anyscale
Endpoints](https://app.endpoints.anyscale.com/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
- Inspired by https://github.com/langchain-ai/langchain/pull/8434
(@kylehh and @baskaryan )
2023-08-07 13:21:05 -07:00
David vonThenen
40079d4936
Introduce Nebula LLM to LangChain (#8876)
## Description

This PR adds Nebula to the available LLMs in LangChain.

Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.

Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?

You can read more about Nebula here:

https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/

#### Integration Test 

An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.

#### Linting

- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format

### Dependencies

No new dependencies were introduced.

### Twitter handle

[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)


If you have any questions, please let me know.

cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 13:15:26 -07:00
manmax31
40096c73cd
Add BGE embeddings support (#8848)
- Description: [BGE-large](https://huggingface.co/BAAI/bge-large-en)
embeddings from BAAI are at the top of [MTEB
leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Hence
adding support for it.
- Tag maintainer: @baskaryan
- Twitter handle: @ManabChetia3

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 11:15:30 -07:00
Tudor Golubenco
aeaef8f3a3
Add support for Xata as a vector store (#8822)
This adds support for [Xata](https://xata.io) (data platform based on
Postgres) as a vector store. We have recently added [Xata to
Langchain.js](https://github.com/hwchase17/langchainjs/pull/2125) and
would love to have the equivalent in the Python project as well.

The PR includes integration tests and a Jupyter notebook as docs. Please
let me know if anything else would be needed or helpful.

I have added the xata python SDK as an optional dependency.

## To run the integration tests

You will need to create a DB in xata (see the docs), then run something
like:

```
OPENAI_API_KEY=sk-... XATA_API_KEY=xau_... XATA_DB_URL='https://....xata.sh/db/langchain'  poetry run pytest tests/integration_tests/vectorstores/test_xata.py
```

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Philip Krauss <35487337+philkra@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 08:14:52 -07:00
Massimiliano Pronesti
a616e19975
feat(llms): add support for vLLM (#8806)
Hello langchain maintainers, 
this PR aims at integrating
[vllm](https://vllm.readthedocs.io/en/latest/#) into langchain. This PR
closes #8729.

This feature clearly depends on `vllm`, but I've seen other models
supported here depend on packages that are not included in the
pyproject.toml (e.g. `gpt4all`, `text-generation`) so I thought it was
the case for this as well.

@hwchase17, @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-07 07:32:02 -07:00
Karthik Raja A
5a9765b1b5
MultiOn client toolkit update 2.0 (#8750)
- Updated to use newer better function interaction
 - Previous version had only one callback
 - @hinthornw @hwchase17  Can you look into this
 -  Shout out to @MultiON_AI @DivGarg9 on twitter

---------

Co-authored-by: Naman Garg <ngarg3@binghamton.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 22:24:10 -07:00
Zend
bd4865b6fe
Async Recursive URL loader (#8502)
Description: This PR improves the function of recursive_url_loader, such
as limiting the depth of the access, and customizable extractors(from
the raw webpage to the text of the Document object), so that users can
use other tools to extract the webpage. This PR also includes the
document and test for the new loader.
Old PR closed due to project structure change. #7756

Because socket requests are not allowed, the old unit test was removed.
Issue: N/A
Dependencies: asyncio, aiohttp
Tag maintainer: @rlancemartin
Twitter handle: @ Zend_Nihility

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-06 16:22:31 -07:00
fqassemi
485d716c21
Feature faiss delete (#8135)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: docstore had two main method: add and search, however,
dealing with docstore sometimes requires deleting an entry from
docstore. So I have added a simple delete method that deletes items from
docstore. Additionally, I have added the delete method to faiss
vectorstore for the very same reason.
  - Issue: NA
  - Dependencies: NA
  - Tag maintainer:  @rlancemartin, @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-06 15:46:30 -07:00
Kshitij Wadhwa
5f1aab5487
Fix docs for Rockset (#8807)
* remove error output for notebook
* add comment about vector length for ingest transformation
* change OPENAI_KEY -> OPENAI_API_KEY

cc @baskaryan
2023-08-06 15:04:01 -07:00
Bagatur
d7b613a293
Bagatur/revert revert nuclia (#8833) 2023-08-06 11:24:36 -07:00
Bagatur
2f309a4ce6
Revert "Bagatur/nuclia (#8404)" (#8832) 2023-08-06 11:14:01 -07:00
Bal Narendra Sapa
a22d502248
added the embeddings part (#8805)
Description: forgot to add the embeddings part in the documentation.
sorry 😅

@baskaryan
2023-08-05 17:16:33 -07:00
Bagatur
9fc9018951
Bagatur/nuclia (#8404)
Co-authored-by: Eric BREHAULT <ebrehault@gmail.com>
2023-08-05 10:44:43 -07:00
Joshua Carroll
e5fed7d535
Extend the StreamlitChatMessageHistory docs with a fuller example and… (#8774)
Add more details to the [notebook for
StreamlitChatMessageHistory](https://python.langchain.com/docs/integrations/memory/streamlit_chat_message_history),
including a link to a [running example
app](https://langchain-st-memory.streamlit.app/).

Original PR: https://github.com/langchain-ai/langchain/pull/8497
2023-08-04 14:27:46 -07:00
Dayou Liu
91a0817e39
docs: llamacpp minor fixes (#8738)
- Description: minor updates on llama cpp doc
2023-08-04 14:19:43 -07:00
Bal Narendra Sapa
bd61757423
add documentation for serializer function (#8769)
Description: Added necessary documentation for serializer functions

@baskaryan
2023-08-04 14:39:40 -04:00
rjanardhan3
affaaea87b
Updates fireworks (#8765)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Updates to Fireworks Documentation, 
  - Issue: N/A,
  - Dependencies: N/A,
  - Tag maintainer: @rlancemartin,

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-04 10:32:22 -07:00
Bagatur
8c35fcb571
update rss doc (#8761) 2023-08-04 08:25:20 -07:00
Bagatur
0d5a90f30a
Revert "add filter to sklearn vector store functions (#8113)" (#8760) 2023-08-04 08:13:32 -07:00
Ruiqi Guo
6aee589eec
Add ScaNN support in vectorstore. (#8251)
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann

- Dependencies: scann

Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py

@rlancemartin, @eyurtsev for review.

Thanks!
2023-08-03 23:41:30 -07:00
shibuiwilliam
0f0ccfe7f6
add filter to sklearn vector store functions (#8113)
# What
- This is to add filter option to sklearn vectore store functions

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Add filter to sklearn vectore store functions.
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:41 -07:00
shibuiwilliam
2759e2d857
add save and load tfidf vectorizer and docs for TFIDFRetriever (#8112)
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.

<!-- Thank you for contributing to LangChain!

Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
  - Issue: None
  - Dependencies: None
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @MlopsJ

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 23:06:27 -07:00
Lance Martin
d1b95db874
Retriever that can re-phase user inputs (#8026)
Simple retriever that applies an LLM between the user input and the
query pass the to retriever.

It can be used to pre-process the user input in any way.

The default prompt:

```
DEFAULT_QUERY_PROMPT = PromptTemplate(
    input_variables=["question"],
    template="""You are an assistant tasked with taking a natural languge query from a user
    and converting it into a query for a vectorstore. In this process, you strip out
    information that is not relevant for the retrieval task. Here is the user query: {question} """
)
```

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-03 21:23:59 -07:00
Harrison Chase
6c3573e7f6
Harrison/aleph alpha (#8735)
Co-authored-by: PiotrMazurek <piotr.mazurek@aleph-alpha.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 21:21:15 -07:00
Ofer Mendelevitch
29f51055e8
Updates to Vectara documentation (#8699)
- Description: updates to Vectara documentation with more details on how
to get started.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @vectara, @ofermend

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 20:21:17 -07:00
ruze
8ef7e14a85
RSS Feed / OPML loader (#8694)
Replace this comment with:
- Description: added a document loader for a list of RSS feeds or OPML.
It iterates through the list and uses NewsURLLoader to load each
article.
  - Issue: N/A
  - Dependencies: feedparser, listparser
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-03 14:58:06 -07:00
Bagatur
b2b71b0d35
Bagatur/eden llm (#8670)
Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: KyrianC <ckyrian@protonmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-08-03 10:24:51 -07:00
ruze
71f98db2fe
Newspaper (#8647)
- Description: Added newspaper3k based news article loader. Provide a
list of urls.
  - Issue: N/A
  - Dependencies: newspaper3k,
  - Tag maintainer: @rlancemartin , @eyurtsev 
  - Twitter handle: @ruze

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 17:56:08 -07:00
Lance Martin
59194c2214
Add summarization use-case (#8376)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 14:25:11 -07:00
Leonid Ganeline
1335f2b9f8
MLflow examples (#8642)
Updated `MLflow` examples with links to the examples from MLflow

 @baskaryan
2023-08-02 13:30:28 -07:00
Comendeiro
5c516945d0
Add local support for audio models (PR #7329) (#7591)
- Description: run the poetry dependencies
  - Issue: #7329 
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @rlancemartin

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 01:24:53 -07:00
rjanardhan3
68113348cc
Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Taqi Jaffri
4806504ebc Fixed one last key name 2023-08-01 15:43:26 -07:00
Joshua Carroll
6705928b9d
Add StreamlitChatMessageHistory (#8497)
Add a StreamlitChatMessageHistory class that stores chat messages in
[Streamlit's Session
State](https://docs.streamlit.io/library/api-reference/session-state).

Note: The integration test uses a currently-experimental Streamlit
testing framework to simulate the execution of a Streamlit app. Marking
this PR as draft until I confirm with the Streamlit team that we're
comfortable supporting it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:28:15 -07:00
Matt Robinson
8961c720b8
docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8
mv (#8595) 2023-08-01 14:17:04 -07:00
Tesfagabir Meharizghi
a7000ee89e
Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
Taqi Jaffri
96843f3bd4 Fixed source key name for docugami loader 2023-08-01 12:54:26 -07:00
mpb159753
7df2dfc4c2
Add Support for Loading Documents from Huawei OBS (#8573)
Description:
This PR adds support for loading documents from Huawei OBS (Object
Storage Service) in Langchain. OBS is a cloud-based object storage
service provided by Huawei Cloud. With this enhancement, Langchain users
can now easily access and load documents stored in Huawei OBS directly
into the system.

Key Changes:
- Added a new document loader module specifically for Huawei OBS
integration.
- Implemented the necessary logic to authenticate and connect to Huawei
OBS using access credentials.
- Enabled the loading of individual documents from a specified bucket
and object key in Huawei OBS.
- Provided the option to specify custom authentication information or
obtain security tokens from Huawei Cloud ECS for easy access.

How to Test:
1. Ensure the required package "esdk-obs-python" is installed.
2. Configure the endpoint, access key, secret key, and bucket details
for Huawei OBS in the Langchain settings.
3. Load documents from Huawei OBS using the updated document loader
module.
4. Verify that documents are successfully retrieved and loaded into
Langchain for further processing.

Please review this PR and let us know if any further improvements are
needed. Your feedback is highly appreciated!

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 09:30:30 -07:00
Kenny
1e8fca5518
Add ConcurrentLoader (#7512)
Works just like the GenericLoader but concurrently for those who choose
to optimize their workflow.

@rlancemartin @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:31 -07:00
Leonid Kuligin
b4a126ae71
Updated docs on Vertex AI going GA (#8531)
#8074

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-31 17:15:04 -07:00
Jeff Huber
07d6d1ca38
fix error in chroma docker instructions (#8533)
This makes the Chroma instructions for Docker work! 


https://python.langchain.com/docs/integrations/vectorstores/chroma#basic-example-using-the-docker-container
2023-07-31 16:32:53 -07:00
Matthew DeGuzman
844eca98d5
Add LLaMa Formatter and AzureML Chat Endpoint (#8382)
## Description

Microsoft and Meta recently [announced their
collaboration](https://blogs.microsoft.com/blog/2023/07/18/microsoft-and-meta-expand-their-ai-partnership-with-llama-2-on-azure-and-windows/)
on LLaMa2. This PR extends the current LLM wrapper and introduces a new
Chat Model wrapper for AzureML to support LLaMa2.

## Dependencies

No dependencies added :)

## Twitter Handles

[@matthew_d13](https://twitter.com/matthew_d13)
[@prakhar_in](https://twitter.com/prakhar_in)

maintainers - @hwchase17, @baskaryan
2023-07-31 16:26:25 -07:00
Anubhav Bindlish
913a156cff
Minor improvements to rockset vectorstore (#8416)
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 09:54:59 -07:00
Muhammed Al-Dulaimi
9975ba4124
Fix ChromaDB integration -> docker container instructions (#8447)
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:

```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset()  # resets the database
collection = client.create_collection("my_collection")
...
```

`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`

This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it

## Issue
This fixes the runtime error that occurs when running the docker
container example code

## Tag Maintainer
@rlancemartin, @eyurtsev
2023-07-30 21:11:56 -07:00
Ludwig Hubert
08f5e6b801
Fix documentation for from_documents signature (#8482)
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .

fixes #8457 

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 13:24:44 -07:00
Muneeb Ahmad
4923cf029a
Added Proper Documentation for faiss-gpu Installation (#8492)
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.

### Issue: 
Documentation / Comments Related.

### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.

### Tag maintainer:
 @rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
2023-07-30 13:24:30 -07:00
Harrison Chase
8f14ddefdf
add anthropic functions wrapper (#8475)
a cheeky wrapper around claude that adds in function calling support
(kind of, hence it going in experimental)
2023-07-30 07:23:46 -07:00
William FH
b7c0eb9ecb
Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
Zack Proser
3892cefac6
Minor fixes to enhance notebook usability: (#8389)
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: none,
  - Tag maintainer: @rlancemartin @eyurtsev,
  - Twitter handle: @zackproser (certainly not necessary!)
2023-07-28 17:10:03 -07:00
Amélie
8ee56b9a5b
Feature: Add support for meilisearch vectorstore (#7649)
**Description:**

Add support for Meilisearch vector store.
Resolve #7603 

- No external dependencies added
- A notebook has been added

@rlancemartin

https://twitter.com/meilisearch

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 17:06:54 -07:00
Bagatur
2311d57df4
mv dropbox (#8438) 2023-07-28 16:07:56 -07:00
HeTaoPKU
d5884017a9
Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
Jiayi Ni
1efb9bae5f
FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Gordon Clark
e66759cc9d
Github add "Create PR" tool + Docs update (#8235)
Added a new tool to the Github toolkit called **Create Pull Request.**
Now we can make our own langchain contributor in langchain 😁

In order to have somewhere to pull from, I also added a new env var,
"GITHUB_BASE_BRANCH." This will allow the existing env var,
"GITHUB_BRANCH," to be a working branch for the bot (so that it doesn't
have to always commit on the main/master). For example, if you want the
bot to work in a branch called `bot_dev` and your repo base is `main`,
you would set up the vars like:
```
GITHUB_BASE_BRANCH = "main"
GITHUB_BRANCH = "bot_dev"
``` 

Maintainer responsibilities:
  - Agents / Tools / Toolkits: @hinthornw
2023-07-27 19:19:44 -07:00
Karan V
a003a0baf6
fix(petals) allows to run models that aren't Bloom (Support for LLama and newer models) (#8356)
In this PR:

- Removed restricted model loading logic for Petals-Bloom
- Removed petals imports (DistributedBloomForCausalLM,
BloomTokenizerFast)
- Instead imported more generalized versions of loader
(AutoDistributedModelForCausalLM, AutoTokenizer)
- Updated the Petals example notebook to allow for a successful
installation of Petals in Apple Silicon Macs

- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 18:01:04 -07:00
Taozhi Wang
594f195e54
Add embeddings for AwaEmbedding (#8353)
- Description: Adds AwaEmbeddings class for embeddings, which provides
users with a convenient way to do fine-tuning, as well as the potential
need for multimodality

  - Tag maintainer: @baskaryan

Create `Awa.ipynb`: an example notebook for AwaEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/awa.py`: The embedding class
Create `embeddings/test_awa.py`: The test file.

---------

Co-authored-by: taozhiwang <taozhiwa@gmail.com>
2023-07-27 17:08:00 -07:00
Sachin Varghese
01217b2247
Update sql database agent example (#8354)
This PR fixes a minor documentation issue on the SQL database toolkit
example notebook.
2023-07-27 13:44:02 -07:00
Bagatur
55beab326c
cleanup warnings (#8379) 2023-07-27 13:43:05 -07:00
Bagatur
68763bd25f
mv popular and additional chains to use cases (#8242) 2023-07-27 12:55:13 -07:00
Ikko Eltociear Ashimine
934ea80780
Fix typo in Etherscan.ipynb (#8340)
specifc  -> specific
2023-07-27 01:57:19 -07:00
William FH
412e29d436
Fix notebook that 'cannot convert' via nbdoc_build (#8333) 2023-07-26 18:54:23 -07:00
Fabrizio Ruocco
ddc353a768
Azure Cognitive Search: Custom index and scoring profile support (#6843)
Description: Adding support for custom index and scoring profile support
in Azure Cognitive Search
@hwchase17

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 17:58:01 -07:00
William FH
01a9b06400
Add api cross ref linking (#8275)
Example of how it would show up in our python docs:


![image](https://github.com/langchain-ai/langchain/assets/13333726/0f0a88cc-ba4a-4778-bc47-118c66807f15)


Examples added to the reference docs:

https://api.python.langchain.com/en/wfh-api_crosslink/vectorstores/langchain.vectorstores.chroma.Chroma.html#langchain.vectorstores.chroma.Chroma


![image](https://github.com/langchain-ai/langchain/assets/13333726/dcd150de-cb56-4d42-b49a-a76a002a5a52)
2023-07-26 12:38:58 -07:00
Bagatur
f27176930a
fix geopandas link (#8305) 2023-07-26 11:30:17 -07:00
Timon Palm
70604e590f
DuckDuckGoSearch News Tool (#8292)
Description: 
I wanted to use the DuckDuckGoSearch tool in an agent to let him get the
latest news for a topic. DuckDuckGoSearch has already an implemented
function for retrieving news articles. But there wasn't a tool to use
it. I simply adapted the SearchResult class with an extra argument
"backend". You can set it to "news" to only get news articles.

Furthermore, I added an example to the DuckDuckGo Notebook on how to
further customize the results by using the DuckDuckGoSearchAPIWrapper.

Dependencies: no new dependencies
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 11:30:01 -07:00
Aarav Borthakur
8ce661d5a1
Docs: Fix Rockset links (#8214)
Fix broken Rockset links.

Right now links at
https://python.langchain.com/docs/integrations/providers/rockset are
broken.
2023-07-26 10:38:37 -07:00
Jon Bennion
ad38eb2d50
correction to reference to code (#8301)
- Description: fixes typo referencing code

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-26 10:33:18 -07:00
Naveen Tatikonda
9cbefcc56c
[ OpenSearch ] : Add AOSS Support to OpenSearch (#8256)
### Description

This PR includes the following changes:

- Adds AOSS (Amazon OpenSearch Service Serverless) support to
OpenSearch. Please refer to the documentation on how to use it.
- While creating an index, AOSS only supports Approximate Search with
`nmslib` and `faiss` engines. During Search, only Approximate Search and
Script Scoring (on doc values) are supported.
- This PR also adds support to `efficient_filter` which can be used with
`faiss` and `lucene` engines.
- The `lucene_filter` is deprecated. Instead please use the
`efficient_filter` for the lucene engine.


Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-07-25 23:59:36 -07:00
Byron Saltysiak
68a906bb31
added lxml to the pip install example since it is required (#8260)
- Description: The trello dataloader example didn't work without an
additional dependency installed - lxml
  - Issue: na
2023-07-25 18:16:07 -07:00
Emory Petermann
7734a2b5ab
update golden-query notebook and fix typo in golden docs (#8253)
updating the documentation to be consistent for Golden query tool and
have a better introduction to the tool
2023-07-25 18:15:48 -07:00
William FH
0a16b3d84b
Update Integrations links (#8206) 2023-07-24 21:20:32 -07:00
Taqi Jaffri
8f158b72fc
Added stop sequence support to replicate (#8107)
Stop sequences are useful if you are doing long-running completions and
need to early-out rather than running for the full max_length... not
only does this save inference cost on Replicate, it is also much faster
if you are going to truncate the output later anyway.

Other LLMs support stop sequences natively (e.g. OpenAI) but I didn't
see this for Replicate so adding this via their prediction cancel
method.

Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.

I did update the replicate integration test and ran `poetry run pytest
tests/integration_tests/llms/test_replicate.py` successfully.

Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)

Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
2023-07-24 17:34:13 -07:00
glaze
f7ad14acfa
Add etherscan document loader (#7943)
@rlancemartin 
The modification includes:
* etherscanLoader
* test_etherscan
* document ipynb

I have run the test, lint, format, and spell check. I do encounter a
linting error on ipynb, I am not sure how to address that.
```
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:55: error: Name "null" is not defined  [name-defined]
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:76: error: Name "null" is not defined  [name-defined]
Found 2 errors in 1 file (checked 1 source file)
```
- Description: The Etherscan loader uses etherscan api to load
transaction histories under specific accounts on Ethereum Mainnet.
- No dependency is introduced by this PR.
- Twitter handle: glazecl

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 17:09:16 -07:00
Liu Ming
24f889f2bc
Change with_history option to False for ChatGLM by default (#8076)
ChatGLM LLM integration will by default accumulate conversation
history(with_history=True) to ChatGLM backend api, which is not expected
in most cases. This PR set with_history=False by default, user should
explicitly set llm.with_history=True to turn this feature on. Related
PR: #8048 #7774

---------

Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:46:02 -07:00
Anthony Mahanna
76102971c0
ArangoDB/AQL support for Graph QA Chain (#7880)
**Description**: Serves as an introduction to LangChain's support for
[ArangoDB](https://github.com/arangodb/arangodb), similar to
https://github.com/hwchase17/langchain/pull/7165 and
https://github.com/hwchase17/langchain/pull/4881

**Issue**: No issue has been created for this feature

**Dependencies**: `python-arango` has been added as an optional
dependency via the `CONTRIBUTING.md` guidelines
 
**Twitter handle**: [at]arangodb

- Integration test has been added
- Notebook has been added:
[graph_arangodb_qa.ipynb](https://github.com/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

[![Open In
Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

```
docker run -p 8529:8529 -e ARANGO_ROOT_PASSWORD= arangodb/arangodb
```

```
pip install git+https://github.com/amahanna/langchain.git
```

```python
from arango import ArangoClient

from langchain.chat_models import ChatOpenAI
from langchain.graphs import ArangoGraph
from langchain.chains import ArangoGraphQAChain

db = ArangoClient(hosts="localhost:8529").db(name="_system", username="root", password="", verify=True)

graph = ArangoGraph(db)

chain = ArangoGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph)

chain.run("Is Ned Stark alive?")
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:16:52 -07:00
Juan José Torres
1cc7d4c9eb
Update SageMaker Endpoint Embeddings docs to be up to date with current requirements (#8103)
- **Description:** Simple change of the Class that ContentHandler
inherits from. To create an object of type SagemakerEndpointEmbeddings,
the property content_handler must be of type EmbeddingsContentHandler
not ContentHandlerBase anymore,
  - **Twitter handle:** @Juanjo_Torres11

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 13:35:06 -07:00
Bagatur
1a7d8667c8
Bagatur/gateway chat (#8198)
Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: dbczumar <corey.zumar@databricks.com>
2023-07-24 12:17:00 -07:00
Ettore Di Giacinto
ae28568e2a
Add embeddings for LocalAI (#8134)
Description:

This PR adds embeddings for LocalAI (
https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in
replacement. As LocalAI can re-use OpenAI clients it is mostly following
the lines of the OpenAI embeddings, however when embedding documents, it
just uses string instead of sending tokens as sending tokens is
best-effort depending on the model being used in LocalAI. Sending tokens
is also tricky as token id's can mismatch with the model - so it's safer
to just send strings in this case.

Partly related to: https://github.com/hwchase17/langchain/issues/5256

Dependencies: No new dependencies

Twitter: @mudler_it
---------

Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 12:16:49 -07:00
Mike Nitsenko
d983046f90
Extend Cube Semantic Loader functionality (#8186)
**PR Description:**

This pull request introduces several enhancements and new features to
the `CubeSemanticLoader`. The changes include the following:

1. Added imports for the `json` and `time` modules.
2. Added new constructor parameters: `load_dimension_values`,
`dimension_values_limit`, `dimension_values_max_retries`, and
`dimension_values_retry_delay`.
3. Updated the class documentation with descriptions for the new
constructor parameters.
4. Added a new private method `_get_dimension_values()` to retrieve
dimension values from Cube's REST API.
5. Modified the `load()` method to load dimension values for string
dimensions if `load_dimension_values` is set to `True`.
6. Updated the API endpoint in the `load()` method from the base URL to
the metadata endpoint.
7. Refactored the code to retrieve metadata from the response JSON.
8. Added the `column_member_type` field to the metadata dictionary to
indicate if a column is a measure or a dimension.
9. Added the `column_values` field to the metadata dictionary to store
the dimension values retrieved from Cube's API.
10. Modified the `page_content` construction to include the column title
and description instead of the table name, column name, data type,
title, and description.

These changes improve the functionality and flexibility of the
`CubeSemanticLoader` class by allowing the loading of dimension values
and providing more detailed metadata for each document.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 12:11:58 -07:00
Bagatur
c8c8635dc9
mv module integrations docs (#8101) 2023-07-23 23:23:16 -07:00
Bagatur
58f65fcf12
use top nav docs (#8090) 2023-07-21 13:52:03 -07:00