Commit Graph

228 Commits

Author SHA1 Message Date
Christophe Bornet
484a009012
community[minor]: Relax constraints on Cassandra VectorStore constructors (#21209)
If Session and/or keyspace are not provided, they are resolved from
cassio's context. So they are not required.
This change is fully backward compatible.
2024-05-06 14:32:32 -04:00
Rohan Aggarwal
8021d2a2ab
community[minor]: Oraclevs integration (#21123)
Thank you for contributing to LangChain!

- Oracle AI Vector Search 
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.


- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings


- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.


- We have made sure that make format and make lint run clean.

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-04 03:15:35 +00:00
ccurme
6da3d92b42
(all): update removal in deprecation warnings from 0.2 to 0.3 (#21265)
We are pushing out the removal of these to 0.3.

`find . -type f -name "*.py" -exec sed -i ''
's/removal="0\.2/removal="0.3/g' {} +`
2024-05-03 14:29:36 -04:00
Raghav Dixit
7d451d0041
community[patch]: Update lancedb.py (#21192)
very minor update in LanceDB integration, 'metric' argument was missing.
2024-05-02 17:06:39 +00:00
Ismail Hossain Polas
1fdf63fa6c
community[patch]: update package name to bagelML (#19948)
**Description**
This pull request updates the Bagel Network package name from
"betabageldb" to "bagelML" to align with the latest changes made by the
Bagel Network team.

The following modifications have been made:

- Updated all references to the old package name ("betabageldb") with
the new package name ("bagelML") throughout the codebase.
- Modified the documentation, and any relevant scripts to reflect the
package name change.
- Tested the changes to ensure that the functionality remains intact and
no breaking changes were introduced.

By merging this pull request, our project will stay up to date with the
latest Bagel Network package naming convention, ensuring compatibility
and smooth integration with their updated library.

Please review the changes and provide any feedback or suggestions. Thank
you!
2024-05-01 01:17:33 -04:00
tianzedavid
5a8909440b
docs: remove repetitive words (#21058)
remove repetitive words

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-05-01 01:10:42 +00:00
MacanPN
0f7f448603
community[patch]: add delete() method to AzureSearch vector store (#21127)
**Issue:**
Currently `AzureSearch` vector store does not implement `delete` method.
This PR implements it. This also makes it compatible with LangChain
indexer.

**Dependencies:**
None

**Twitter handle:**
@martintriska1

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-30 23:46:18 +00:00
Charlie Marsh
8f38b7a725
multiple: Remove unnecessary Ruff suppression comments (#21050)
## Summary

I ran `ruff check --extend-select RUF100 -n` to identify `# noqa`
comments that weren't having any effect in Ruff, and then `ruff check
--extend-select RUF100 -n --fix` on select files to remove all of the
unnecessary `# noqa: F401` violations. It's possible that these were
needed at some point in the past, but they're not necessary in Ruff
v0.1.15 (used by LangChain) or in the latest release.

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-30 17:13:48 +00:00
高远
a7a4630bf4
community[patch]: Modify the text field type and add new exception handling (#20116)
Co-authored-by: gaoyuan <gaoyuan.20001218@bytedance.com>
2024-04-29 20:06:00 -04:00
Leonid Ganeline
85094cbb3a
docs: community docstring updates (#21040)
Added missed docstrings. Updated docstrings to consistent format.
2024-04-29 17:40:23 -04:00
Cahid Arda Öz
cc6191cb90
community[minor]: Add support for Upstash Vector (#20824)
## Description

Adding `UpstashVectorStore` to utilize [Upstash
Vector](https://upstash.com/docs/vector/overall/getstarted)!

#17012 was opened to add Upstash Vector to langchain but was closed to
wait for filtering. Now filtering is added to Upstash vector and we open
a new PR. Additionally, [embedding
feature](https://upstash.com/docs/vector/features/embeddingmodels) was
added and we add this to our vectorstore aswell.

## Dependencies

[upstash-vector](https://pypi.org/project/upstash-vector/) should be
installed to use `UpstashVectorStore`. Didn't update dependencies
because of [this comment in the previous
PR](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1876522450).

## Tests

Tests are added and they pass. Tests are naturally network bound since
Upstash Vector is offered through an API.

There was [a discussion in the previous PR about mocking the
unittests](https://github.com/langchain-ai/langchain/pull/17012#pullrequestreview-1891820567).
We didn't make changes to this end yet. We can update the tests if you
can explain how the tests should be mocked.

---------

Co-authored-by: ytkimirti <yusuftaha9@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-29 17:25:01 -04:00
Massimiliano Pronesti
ce89b34fc0
community[patch]: support hybrid search with threshold in Azure AI Search Retriever (#20907)
Support hybrid search with a score threshold -- similar to what we do
for similarity search.
2024-04-29 12:11:44 -04:00
Leonid Ganeline
dc7c06bc07
community[minor]: import fix (#20995)
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
2024-04-29 10:32:50 -04:00
Naveen Tatikonda
8bbdb4f6a0
community[patch]: Add OpenSearch as semantic cache (#20254)
### Description
Use OpenSearch vector store as Semantic Cache.

### Twitter Handle
**@OpenSearchProj**

---------

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
Co-authored-by: Harish Tatikonda <harishtatikonda@Harishs-MacBook-Air.local>
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-31-155.ec2.internal>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-27 00:20:24 +00:00
Mayank Solanki
8c085fc697
community[patch]: Added a function from_existing_collection in Qdrant vector database. (#20779)
Issue: #20514 
The current implementation of `construct_instance` expects a `texts:
List[str]` that will call the embedding function. This might not be
needed when we already have a client with collection and `path, you
don't want to add any text.

This PR adds a class method that returns a qdrant instance with an
existing client.

Here everytime
cb6e5e56c2/libs/community/langchain_community/vectorstores/qdrant.py (L1592)
`construct_instance` is called, this line sends some text for embedding
generation.

---------

Co-authored-by: Anush <anushshetty90@gmail.com>
2024-04-26 15:34:09 -07:00
Jingpan Xiong
1202017c56
community[minor]: Add relyt vector database (#20316)
Co-authored-by: kaka <kaka@zbyte-inc.cloud>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: jingsi <jingsi@leadincloud.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-25 19:49:29 +00:00
Andres Algaba
05ae8ca7d4
community[patch]: deprecate persist method in Chroma (#20855)
Thank you for contributing to LangChain!

- [x] **PR title**

- [x] **PR message**:
- **Description:** Deprecate persist method in Chroma no longer exists
in Chroma 0.4.x
    - **Issue:** #20851 
    - **Dependencies:** None
    - **Twitter handle:** AndresAlgaba1

- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-25 19:42:03 +00:00
Tomaz Bratanic
520972fd0f
community[patch]: Support passing graph object to Neo4j integrations (#20876)
For driver connection reusage, we introduce passing the graph object to
neo4j integrations
2024-04-25 11:30:22 -07:00
Bagatur
5b83130855
core[minor], langchain[patch], community[patch]: mv StructuredQuery (#20849)
mv StructuredQuery to core
2024-04-25 09:40:26 -07:00
Raghav Dixit
9b7fb381a4
community[patch]: LanceDB integration patch update (#20686)
Description : 

- added functionalities - delete, index creation, using existing
connection object etc.
- updated usage 
- Added LaceDB cloud OSS support

make lint_diff , make test checks done
2024-04-24 16:27:43 -07:00
volodymyr-memsql
493afe4d8d
community[patch]: add hybrid search to singlestoredb vectorstore (#20793)
Implemented the ability to enable full-text search within the
SingleStore vector store, offering users a versatile range of search
strategies. This enhancement allows users to seamlessly combine
full-text search with vector search, enabling the following search
strategies:

* Search solely by vector similarity.
* Conduct searches exclusively based on text similarity, utilizing
Lucene internally.
* Filter search results by text similarity score, with the option to
specify a threshold, followed by a search based on vector similarity.
* Filter results by vector similarity score before conducting a search
based on text similarity.
* Perform searches using a weighted sum of vector and text similarity
scores.

Additionally, integration tests have been added to comprehensively cover
all scenarios.
Updated notebook with examples.

CC: @baskaryan, @hwchase17

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-24 21:34:50 +00:00
Martin Kolb
0186e4e633
community[patch]: Advanced filtering for HANA Cloud Vector Engine (#20821)
- **Description:**
This PR adds support for advanced filtering to the integration of HANA
Vector Engine.
The newly supported filtering operators are: $eq, $ne, $gt, $gte, $lt,
$lte, $between, $in, $nin, $like, $and, $or

  - **Issue:** N/A
  - **Dependencies:** no new dependencies added

Added integration tests to:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Description of the new capabilities in notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`
2024-04-24 13:47:27 -07:00
Massimiliano Pronesti
8d1167b32f
community[patch]: add support for similarity_score_threshold search in… (#20852)
See
https://github.com/langchain-ai/langchain/issues/20600#issuecomment-2075569338
for details.

@chrislrobert
2024-04-24 19:14:33 +00:00
Mark Needham
ce23f8293a
Community patch clickhouse make it possible to not specify index (#20460)
Vector indexes in ClickHouse are experimental at the moment and can
sometimes break/change behaviour. So this PR makes it possible to say
that you don't want to specify an index type.

Any queries against the embedding column will be brute force/linear
scan, but that gives reasonable performance for small-medium dataset
sizes.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-22 10:46:37 -07:00
Christophe Bornet
c909ae0152
community[minor]: Add async methods to CassandraVectorStore (#20602)
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-20 02:09:58 +00:00
Tomaz Bratanic
8c08cf4619
community: Add support for relationship indexes in neo4j vector (#20657)
Neo4j has added relationship vector indexes.
We can't populate them, but we can use existing indexes for retrieval
2024-04-19 11:22:42 -07:00
Guangdong Liu
e3c2431c5b
comminuty[patch]:Fix Error in apache doris insert (#19989)
- **Issue:** #19886
2024-04-18 16:34:32 -04:00
Tomaz Bratanic
27370b679e
community[patch]: Ignore null and invalid embedding values for neo4j metadata filtering (#20558) 2024-04-18 16:15:45 -04:00
Massimiliano Pronesti
2542a09abc
community[patch]: AzureSearch incorrectly converted to retriever (#20601)
Closes #20600.

Please see the issue for more details.
2024-04-18 16:06:47 -04:00
Christophe Bornet
8f0b5687a3
community[minor]: Add hybrid search to Cassandra VectorStore (#20286)
Only supported by Astra DB at the moment.
**Twitter handle:** cbornet_
2024-04-18 15:58:43 -04:00
ccurme
c897264b9b
community: (milvus) check for num_shards (#20603)
@rgupta2508 I believe this change is necessary following
https://github.com/langchain-ai/langchain/pull/20318 because of how
Milvus handles defaults:


59bf5e811a/pymilvus/client/prepare.py (L82-L85)
```python
num_shards = kwargs[next(iter(same_key))]
if not isinstance(num_shards, int):
    msg = f"invalid num_shards type, got {type(num_shards)}, expected int"
    raise ParamError(message=msg)
req.shards_num = num_shards
```
this way lets Milvus control the default value (instead of maintaining a
separate default in Langchain).

Let me know if I've got this wrong or you feel it's unnecessary. Thanks.
2024-04-18 09:44:56 -04:00
Rohit Gupta
25c4c24e89
Support to create shards_num in milvus vectorstores (#20318)
To support number of the shards for the collection to create in milvus
vvectorstores.

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
2024-04-18 08:58:00 -04:00
Christophe Bornet
a22da4315b
community[patch]: Replace function in CassandraVectorStore with simpler lambda (#20323) 2024-04-17 17:13:13 -04:00
Christophe Bornet
75733c5cc1
community[minor]: Improve CassandraVectorStore from_texts (#20284) 2024-04-17 17:12:28 -04:00
sdan
a7c5e41443
community[minor]: Added VLite as VectorStore (#20245)
Support [VLite](https://github.com/sdan/vlite) as a new VectorStore
type.

**Description**:
vlite is a simple and blazing fast vector database(vdb) made with numpy.
It abstracts a lot of the functionality around using a vdb in the
retrieval augmented generation(RAG) pipeline such as embeddings
generation, chunking, and file processing while still giving developers
the functionality to change how they're made/stored.

**Before submitting**:
Added tests
[here](c09c2ebd5c/libs/community/tests/integration_tests/vectorstores/test_vlite.py)
Added ipython notebook
[here](c09c2ebd5c/docs/docs/integrations/vectorstores/vlite.ipynb)
Added simple docs on how to use
[here](c09c2ebd5c/docs/docs/integrations/providers/vlite.mdx)

**Profiles**

Maintainers: @sdan
Twitter handles: [@sdand](https://x.com/sdand)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-17 01:24:38 +00:00
Benito Geordie
57b226532d
community[minor]: Added integrations for ThirdAI's NeuralDB as a Retriever (#17334)
**Description:** Adds ThirdAI NeuralDB retriever integration. NeuralDB
is a CPU-friendly and fine-tunable text retrieval engine. We previously
added a vector store integration but we think that it will be easier for
our customers if they can also find us under under
langchain-community/retrievers.

---------

Co-authored-by: kartikTAI <129414343+kartikTAI@users.noreply.github.com>
Co-authored-by: Kartik Sarangmath <kartik@thirdai.com>
2024-04-16 16:36:55 -07:00
Martín Gotelli Ferenaz
b48add4353
community[patch]: Fix pgvector deprecated filter clause usage with OR and AND conditions (#20446)
**Description**: Support filter by OR and AND for deprecated PGVector
version
**Issue**: #20445 
**Dependencies**: N/A
**Twitter** handle: @martinferenaz
2024-04-16 14:08:07 +00:00
Eugene Yurtsev
c50099161b
community[patch]: Use uuid4 not uuid1 (#20487)
Using UUID1 is incorrect since it's time dependent, which makes it easy
to generate the exact same uuid
2024-04-16 09:40:44 -04:00
Leonid Kuligin
676c68d318
community[patch]: deprecating remaining google_community integrations (#20471)
Deprecating remaining google community integrations
2024-04-15 09:57:12 -04:00
Leonid Ganeline
7cf2d2759d
community[patch]: docstrings update (#20301)
Added missed docstrings. Format docstings to the consistent form.
2024-04-11 16:23:27 -04:00
Eugene Yurtsev
22fd844e8a
community[patch]: Add deprecation warnings to postgres implementation (#20222)
Add deprecation warnings to postgres implementation that are in langchain-postgres.
2024-04-11 10:33:22 -04:00
Leonid Ganeline
4cb5f4c353
community[patch]: import flattening fix (#20110)
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.

See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-04-10 13:01:19 -04:00
jeff kit
ac42e96e4c
community[patch], langchain[minor]: Enhance Tencent Cloud VectorDB, langchain: make Tencent Cloud VectorDB self query retrieve compatible (#19651)
- make Tencent Cloud VectorDB support metadata filtering.
- implement delete function for Tencent Cloud VectorDB.
- support both Langchain Embedding model and Tencent Cloud VDB embedding
model.
- Tencent Cloud VectorDB support filter search keyword, compatible with
langchain filtering syntax.
- add Tencent Cloud VectorDB TranslationVisitor, now work with self
query retriever.
- more documentations.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-09 16:50:48 +00:00
Tomaz Bratanic
df25829f33
community[minor]: Add metadata filtering support for neo4j vector (#20001) 2024-04-04 11:37:06 -04:00
Ben Mitchell
b52b78478f
community[minor]: Implement Async OpenSearch afrom_texts & afrom_embeddings (#20009)
- **Description:** Adds async variants of afrom_texts and
afrom_embeddings into `OpenSearchVectorSearch`, which allows for
`afrom_documents` to be called.
- **Issue:** I implemented this because my use case involves an async
scraper generating documents as and when they're ready to be ingested by
Embedding/OpenSearch
- **Dependencies:** None that I'm aware

Co-authored-by: Ben Mitchell <b.mitchell@reply.com>
2024-04-04 15:36:14 +00:00
happy-go-lucky
c6432abdbe
community[patch]: Implement delete method and all async methods in opensearch_vector_search (#17321)
- **Description:** In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, I implemented delete method
and all async methods in opensearch_vector_search
- **Dependencies:** No changes
2024-04-03 09:40:49 -07:00
Bagatur
d62e84c4f5
community[patch]: Revert " Fix the bug that Chroma does not specify `e… (#19866)
…mbedding_function` (#19277)"

This reverts commit 7042934b5f.

Fixes #19848
2024-04-01 10:10:44 -07:00
Dt22
6dbf1a2de0
community[patch]: fix redis input type for index_schema field (#16874)
### Subject: Fix Type Misdeclaration for index_schema in redis/base.py

I noticed a type misdeclaration for the index_schema column in the
redis/base.py file.

When following the instructions outlined in [Redis Custom Metadata
Indexing](https://python.langchain.com/docs/integrations/vectorstores/redis)
to create our own index_schema, it leads to a Pylance type error. <br/>
**The error message indicates that Dict[str, list[Dict[str, str]]] is
incompatible with the type Optional[Union[Dict[str, str], str,
os.PathLike]].**

```
index_schema = {
    "tag": [{"name": "credit_score"}],
    "text": [{"name": "user"}, {"name": "job"}],
    "numeric": [{"name": "age"}],
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users_modified",
    index_schema=index_schema,  
)
```
Therefore, I have created this pull request to rectify the type
declaration problem.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-29 18:55:54 +00:00
morgana
074ad5095f
community[patch]: mmr search for Rockset vectorstore integration (#16908)
- **Description:** Adding support for mmr search in the Rockset
vectorstore integration.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@_morgan_adams_`

---------

Co-authored-by: Rockset API Bot <admin@rockset.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 18:45:22 +00:00
Jan Chorowski
b8b42ccbc5
community[minor]: Pathway vectorstore(#14859)
- **Description:** Integration with pathway.com data processing pipeline
acting as an always updated vectorstore
  - **Issue:** not applicable
- **Dependencies:** optional dependency on
[`pathway`](https://pypi.org/project/pathway/)
  - **Twitter handle:** pathway_com

The PR provides and integration with `pathway` to provide an easy to use
always updated vector store:

```python
import pathway as pw
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import PathwayVectorClient, PathwayVectorServer

data_sources = []
data_sources.append(
    pw.io.gdrive.read(object_id="17H4YpBOAKQzEJ93xmC2z170l0bP2npMy", service_user_credentials_file="credentials.json", with_metadata=True))

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
embeddings_model = OpenAIEmbeddings(openai_api_key=os.environ["OPENAI_API_KEY"])
vector_server = PathwayVectorServer(
    *data_sources,
    embedder=embeddings_model,
    splitter=text_splitter,
)
vector_server.run_server(host="127.0.0.1", port="8765", threaded=True, with_cache=False)
client = PathwayVectorClient(
    host="127.0.0.1",
    port="8765",
)
query = "What is Pathway?"
docs = client.similarity_search(query)
```

The `PathwayVectorServer` builds a data processing pipeline which
continusly scans documents in a given source connector (google drive,
s3, ...) and builds a vector store. The `PathwayVectorClient` implements
LangChain's `VectorStore` interface and connects to the server to
retrieve documents.

---------

Co-authored-by: Mateusz Lewandowski <lewymati@users.noreply.github.com>
Co-authored-by: mlewandowski <mlewandowski@MacBook-Pro-mlewandowski.local>
Co-authored-by: Berke <berkecanrizai1@gmail.com>
Co-authored-by: Adrian Kosowski <adrian@pathway.com>
Co-authored-by: mlewandowski <mlewandowski@macbook-pro-mlewandowski.home>
Co-authored-by: berkecanrizai <63911408+berkecanrizai@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: mlewandowski <mlewandowski@MBPmlewandowski.ht.home>
Co-authored-by: Szymon Dudycz <szymond@pathway.com>
Co-authored-by: Szymon Dudycz <szymon.dudycz@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 10:50:39 -07:00