Decisions to discuss:
1. is a new attr needed or could additional_kwargs be used for this
2. is raw_output a good name for this attr
3. should raw_output default to {} or None
4. should raw_output be included in serialization
5. do we need to update repr/str to exclude raw_output
- add version of AIMessageChunk.__add__ that can add many chunks,
instead of only 2
- In agenerate_from_stream merge and parse chunks in bg thread
- In output parse base classes do more work in bg threads where
appropriate
---------
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This PR moves the in memory implementation to langchain-core.
* The implementation remains importable from langchain-community.
* Supporting utilities are marked as private for now.
mmemory in the description -> memory (corrected spelling mistake)
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Added link to list of built-in tools.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** Support PGVector in PebbloRetrievalQA
- Identity and Semantic Enforcement support for PGVector
- Refactor Vectorstore validation and name check
- Clear the overridden identity and semantic enforcement filters
- **Issue:** NA
- **Dependencies:** NA
- **Tests**: NA(already added)
- **Docs**: Updated
- **Twitter handle:** [@Raj__725](https://twitter.com/Raj__725)
**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**: Updated tests
resolves https://github.com/langchain-ai/langchain/issues/23911
When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.
Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.
This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
Thank you for contributing to LangChain!
- [x] **PR title**: "IBM: Added WatsonxChat to chat models preview,
update passing params to invoke method"
- [x] **PR message**:
- **Description:** Added WatsonxChat passing params to invoke method,
added integration tests
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.
This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.
When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.
2 retrieving methods are added to the VectorStore ones :
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.
If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.
An implementation for Apache Cassandra is also proposed.
See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.
**Twitter handle:** _cbornet
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.
The PR makes the following changes:
1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.
A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>