Not obvious what the error is when you cannot index. This pr adds the
ability to log the first errors reason, to help the user diagnose the
issue.
Also added some more documentation for when you want to use the
vectorstore with an embedding model deployed in elasticsearch.
Credit: @elastic and @phoey1
- Improved docs
- Improved performance in multiple ways through batching, threading,
etc.
- fixed error message
- Added support for metadata filtering during similarity search.
@baskaryan PTAL
[Epsilla](https://github.com/epsilla-cloud/vectordb) vectordb is an
open-source vector database that leverages the advanced academic
parallel graph traversal techniques for vector indexing.
This PR adds basic integration with
[pyepsilla](https://github.com/epsilla-cloud/epsilla-python-client)(Epsilla
vectordb python client) as a vectorstore.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support
- [x] Metadata support
- [x] Metadata Filter support
- [x] Retrieval Strategies
- [x] Approx
- [x] Approx with Hybrid
- [x] Exact
- [x] Custom
- [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests
- [x] Documentation
👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:
## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.
```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch
## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```
## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.
With `ElasticsearchStore` we have retrieval strategies:
### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index"
)
output = docsearch.similarity_search("foo", k=1)
```
### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
)
output = docsearch.similarity_search("foo", k=1)
```
### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.
This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.ApproxRetrievalStrategy(
query_model_id="sentence-transformers__all-minilm-l6-v2"
),
)
output = docsearch.similarity_search("foo", k=1)
```
### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`
```py
def my_custom_query(query_body: dict, query: str) -> dict:
return {"query": {"match": {"text": {"query": "bar"}}}}
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
)
docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)
```
### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.ExactRetrievalStrategy(),
)
output = docsearch.similarity_search("foo", k=1)
```
### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.SparseVectorStrategy(),
)
output = docsearch.similarity_search("foo", k=1)
```
## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.
## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The table creation process in these examples commands do not match what
the recently updated functions in these example commands is looking for.
This change updates the type in the table creation command.
Issue Number for my report of the doc problem #7446
@rlancemartin and @eyurtsev I believe this is your area
Twitter: @j1philli
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.
- **Issue**: Not applicable.
- **Dependencies**: `betabageldb` PyPi package.
- **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
- **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
We ran `make format`, `make lint` and `make test` locally.
Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
---------
Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
## Description
I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.
## Dependencies
It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.
## Profiles
- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud
---------
Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This adds support for [Xata](https://xata.io) (data platform based on
Postgres) as a vector store. We have recently added [Xata to
Langchain.js](https://github.com/hwchase17/langchainjs/pull/2125) and
would love to have the equivalent in the Python project as well.
The PR includes integration tests and a Jupyter notebook as docs. Please
let me know if anything else would be needed or helpful.
I have added the xata python SDK as an optional dependency.
## To run the integration tests
You will need to create a DB in xata (see the docs), then run something
like:
```
OPENAI_API_KEY=sk-... XATA_API_KEY=xau_... XATA_DB_URL='https://....xata.sh/db/langchain' poetry run pytest tests/integration_tests/vectorstores/test_xata.py
```
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Philip Krauss <35487337+philkra@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: docstore had two main method: add and search, however,
dealing with docstore sometimes requires deleting an entry from
docstore. So I have added a simple delete method that deletes items from
docstore. Additionally, I have added the delete method to faiss
vectorstore for the very same reason.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann
- Dependencies: scann
Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py
@rlancemartin, @eyurtsev for review.
Thanks!
# What
- This is to add filter option to sklearn vectore store functions
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Add filter to sklearn vectore store functions.
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: updates to Vectara documentation with more details on how
to get started.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @vectara, @ofermend
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.
@rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:
```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset() # resets the database
collection = client.create_collection("my_collection")
...
```
`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`
This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it
## Issue
This fixes the runtime error that occurs when running the docker
container example code
## Tag Maintainer
@rlancemartin, @eyurtsev
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .
fixes#8457
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.
### Issue:
Documentation / Comments Related.
### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.
### Tag maintainer:
@rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
- Issue: the issue # it fixes (if applicable),
- Dependencies: none,
- Tag maintainer: @rlancemartin @eyurtsev,
- Twitter handle: @zackproser (certainly not necessary!)
**Description:**
Add support for Meilisearch vector store.
Resolve#7603
- No external dependencies added
- A notebook has been added
@rlancemartin
https://twitter.com/meilisearch
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Adding support for custom index and scoring profile support
in Azure Cognitive Search
@hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
This PR includes the following changes:
- Adds AOSS (Amazon OpenSearch Service Serverless) support to
OpenSearch. Please refer to the documentation on how to use it.
- While creating an index, AOSS only supports Approximate Search with
`nmslib` and `faiss` engines. During Search, only Approximate Search and
Script Scoring (on doc values) are supported.
- This PR also adds support to `efficient_filter` which can be used with
`faiss` and `lucene` engines.
- The `lucene_filter` is deprecated. Instead please use the
`efficient_filter` for the lucene engine.
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>