Commit Graph

247 Commits

Author SHA1 Message Date
William FH
9d7e57f5c0
Docs Nit (#7918) 2023-07-18 21:47:28 -07:00
Jarek Kazmierczak
f2ef3ff54a
Google Cloud Enterprise Search retriever (#7857)
Added a retriever that encapsulated Google Cloud Enterprise Search.


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 18:24:08 -07:00
Zizhong Zhang
bdf0c2267f
docs(custom_chain) fix typo (#7898)
Fix typo in the document of custom_chain
2023-07-18 18:03:19 -07:00
Jeff Huber
2139d0197e
upgrade chroma to 0.4.0 (#7749)
** This should land Monday the 17th ** 

Chroma is upgrading from `0.3.29` to `0.4.0`. `0.4.0` is easier to
build, more durable, faster, smaller, and more extensible. This comes
with a few changes:

1. A simplified and improved client setup. Instead of having to remember
weird settings, users can just do `EphemeralClient`, `PersistentClient`
or `HttpClient` (the underlying direct `Client` implementation is also
still accessible)

2. We migrated data stores away from `duckdb` and `clickhouse`. This
changes the api for the `PersistentClient` that used to reference
`chroma_db_impl="duckdb+parquet"`. Now we simply set
`is_persistent=true`. `is_persistent` is set for you to `true` if you
use `PersistentClient`.

3. Because we migrated away from `duckdb` and `clickhouse` - this also
means that users need to migrate their data into the new layout and
schema. Chroma is committed to providing extension notification and
tooling around any schema and data migrations (for example - this PR!).

After upgrading to `0.4.0` - if users try to access their data that was
stored in the previous regime, the system will throw an `Exception` and
instruct them how to use the migration assistant to migrate their data.
The migration assitant is a pip installable CLI: `pip install
chroma_migrate`. And is runnable by calling `chroma_migrate`

-- TODO ADD here is a short video demonstrating how it works. 

Please reference the readme at
[chroma-core/chroma-migrate](https://github.com/chroma-core/chroma-migrate)
to see a full write-up of our philosophy on migrations as well as more
details about this particular migration.

Please direct any users facing issues upgrading to our Discord channel
called
[#get-help](https://discord.com/channels/1073293645303795742/1129200523111841883).
We have also created a [email
listserv](https://airtable.com/shrHaErIs1j9F97BE) to notify developers
directly in the future about breaking changes.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 17:20:54 -07:00
Lance Martin
41c841ec85
Add Llama-v2 to Llama.cpp notebook (#7913) 2023-07-18 15:13:27 -07:00
Lance Martin
862268175e
Add llama-v2 to docs (#7893) 2023-07-18 12:09:09 -07:00
maciej-skorupka
c6d1d6d7fc
feat: moving azure OpenAI API version to the latest 2023-05-15 (#7764)
Moving to the latest non-preview Azure OpenAI API version=2023-05-15.
The previous 2023-03-15-preview doesn't have support, SLA etc. For
instance, OpenAI SDK has moved to this version
https://github.com/openai/openai-python/releases/tag/v0.27.7

@baskaryan
2023-07-18 09:50:15 -07:00
satorioh
259a409998
docs(zilliz): connection_args add token description for serverless cl… (#7810)
Description:

Currently, Zilliz only support dedicated clusters using a pair of
username and password for connection. Regarding serverless clusters,
they can connect to them by using API keys( [ see official note
detail](https://docs.zilliz.com/docs/manage-cluster-credentials)), so I
add API key(token) description in Zilliz docs to make it more obvious
and convenient for this group of users to better utilize Zilliz. No
changes done to code.

---------

Co-authored-by: Robin.Wang <3Jg$94sbQ@q1>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 09:31:39 -07:00
maciej-skorupka
5de7815310
docs: added comment from azure llm to azure chat about GPT-4 (#7884)
Azure GPT-4 models can't be accessed via LLM model. It's easy to miss
that and a lot of discussions about that are on the Internet. Therefore
I added a comment in Azure LLM docs that mentions that and points to
Azure Chat OpenAI docs.
@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-18 08:05:41 -07:00
Bill Zhang
dda11d2a05
WeaviateHybridSearchRetriever option to enable scores. (#7861)
Description: This PR adds the option to retrieve scores and explanations
in the WeaviateHybridSearchRetriever. This feature improves the
usability of the retriever by allowing users to understand the scoring
logic behind the search results and further refine their search queries.

Issue: This PR is a solution to the issue #7855 
Dependencies: This PR does not introduce any new dependencies.

Tag maintainer: @rlancemartin, @eyurtsev

I have included a unit test for the added feature, ensuring that it
retrieves scores and explanations correctly. I have also included an
example notebook demonstrating its use.
2023-07-18 07:57:17 -07:00
Jonathan Pedoeem
c460c29a64
Adding Docs for PromptLayerCallbackHandler (#7860)
Here I am adding documentation for the `PromptLayerCallbackHandler`.
When we created the initial PR for the callback handler the docs were
causing issues, so we merged without the docs.
2023-07-18 07:51:16 -07:00
German Martin
f1eaa9b626
Lost in the middle: We have been ordering documents the WRONG way. (for long context) (#7520)
Motivation, it seems that when dealing with a long context and "big"
number of relevant documents we must avoid using out of the box score
ordering from vector stores.
See: https://arxiv.org/pdf/2306.01150.pdf

So, I added an additional parameter that allows you to reorder the
retrieved documents so we can work around this performance degradation.
The relevance respect the original search score but accommodates the
lest relevant document in the middle of the context.
Extract from the paper (one image speaks 1000 tokens):

![image](https://github.com/hwchase17/langchain/assets/1821407/fafe4843-6e18-4fa6-9416-50cc1d32e811)
This seems to be common to all diff arquitectures. SO I think we need a
good generic way to implement this reordering and run some test in our
already running retrievers.
It could be that my approach is not the best one from the architecture
point of view, happy to have a discussion about that.
For me this was the best place to introduce the change and start
retesting diff implementations.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-18 07:45:15 -07:00
William FH
c6f2d27789
Docs Nits (#7874)
Add links to reference docs
2023-07-18 01:50:14 -07:00
William FH
3179ee3a56
Evals docs (#7460)
Still don't have good "how to's", and the guides / examples section
could be further pruned and improved, but this PR adds a couple examples
for each of the common evaluator interfaces.

- [x] Example docs for each implemented evaluator
- [x] "how to make a custom evalutor" notebook for each low level APIs
(comparison, string, agent)
- [x] Move docs to modules area
- [x] Link to reference docs for more information
- [X] Still need to finish the evaluation index page
- ~[ ] Don't have good data generation section~
- ~[ ] Don't have good how to section for other common scenarios / FAQs
like regression testing, testing over similar inputs to measure
sensitivity, etc.~
2023-07-18 01:00:01 -07:00
Jasper
5b4d53e8ef
Add text_content kwarg to BrowserlessLoader (#7856)
Added keyword argument to toggle between getting the text content of a
site versus its HTML when using the `BrowserlessLoader`
2023-07-17 17:02:19 -07:00
Matt Robinson
3c489be773
feat: optional post-processing for Unstructured loaders (#7850)
### Summary

Adds a post-processing method for Unstructured loaders that allows users
to optionally modify or clean extracted elements.

### Testing

```python
from langchain.document_loaders import UnstructuredFileLoader
from unstructured.cleaners.core import clean_extra_whitespace

loader = UnstructuredFileLoader(
    "./example_data/layout-parser-paper.pdf",
    mode="elements",
    post_processors=[clean_extra_whitespace],
)

docs = loader.load()
docs[:5]
```


### Reviewrs
  - @rlancemartin
  - @eyurtsev
  - @hwchase17
2023-07-17 12:13:05 -07:00
Bagatur
2a315dbee9
fix nb (#7843) 2023-07-17 09:39:11 -07:00
Bagatur
98c48f303a
fix (#7838) 2023-07-17 07:53:11 -07:00
Dayuan Jiang
ee40d37098
add bm25 module (#7779)
- Description: Add a BM25 Retriever that do not need Elastic search
- Dependencies: rank_bm25(if it is not installed it will be install by
using pip, just like TFIDFRetriever do)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: DayuanJian21687

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-17 07:30:17 -07:00
Liu Ming
fa0a9e502a
Add LLM for ChatGLM(2)-6B API (#7774)
Description:
Add LLM for ChatGLM-6B & ChatGLM2-6B API

Related Issue: 
Will the langchain support ChatGLM? #4766
Add support for selfhost models like ChatGLM or transformer models #1780

Dependencies: 
No extra library install required. 
It wraps api call to a ChatGLM(2)-6B server(start with api.py), so api
endpoint is required to run.

Tag maintainer:  @mlot 

Any comments on this PR would be appreciated.
---------

Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-17 07:27:17 -07:00
sseide
25e3d3f283
Support Redis Sentinel database connections (#5196)
# Support Redis Sentinel database connections

This PR adds the support to connect not only to Redis standalone servers
but High Availability Replication sets too
(https://redis.io/docs/management/sentinel/)
Redis Replica Sets have on Master allowing to write data and 2+ replicas
with read-only access to the data. The additional Redis Sentinel
instances monitor all server and reconfigure the RW-Master on the fly if
it comes unavailable.

Therefore all connections must be made through the Sentinels the query
the current master for a read-write connection. This PR adds basic
support to also allow a redis connection url specifying a Sentinel as
Redis connection.

Redis documentation and Jupyter notebook with Redis examples are updated
to mention how to connect to a redis Replica Set with Sentinels

        - 

Remark - i did not found test cases for Redis server connections to add
new cases here. Therefor i tests the new utility class locally with
different kind of setups to make sure different connection urls are
working as expected. But no test case here as part of this PR.
2023-07-17 07:18:51 -07:00
Yifei Song
2e47412073
Add Xorbits agent (#7647)
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.

- This PR added support for the Xorbits agent, which allows langchain to
interact with Xorbits Pandas dataframe and Xorbits Numpy array.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @hinthornw
- Twitter handle: https://twitter.com/Xorbitsio
2023-07-17 07:09:51 -07:00
Mohammad Mohtashim
b8b8a138df
Simple Import fix in Tools Exception Docs (#7740)
Issue: #7720
 @hinthornw
2023-07-15 10:25:34 -04:00
Lance Martin
b015647e31
Add GPT4All embeddings (#7743)
Support for [GPT4All
embeddings](https://docs.gpt4all.io/gpt4all_python_embedding.html)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-15 10:04:29 -04:00
Bearnardd
275b926cf7
add missing import (#7730)
Just a nit documentation fix

 @baskaryan
2023-07-14 20:03:23 -04:00
Lorenzo
77e6bbe6f0
fix typo in deeplake.ipynb (#7718)
- Fixing typos in deeplake documentation
- @baskaryan
2023-07-14 13:38:31 -04:00
Samuel Berthe
2be3515a66
SQLDatabase: adding security disclamer (#7710)
It might be obvious to most engineers, but I think everybody should be
cautious when using such a chain.

![image](https://github.com/hwchase17/langchain/assets/2951285/a1df6567-9d56-4c12-98ea-767401ae2ac8)
2023-07-14 13:38:16 -04:00
Bagatur
bae93682f6
update docs (#7714) 2023-07-14 11:49:09 -04:00
Bagatur
b065da6933
Bagatur/docs nit (#7712) 2023-07-14 11:13:02 -04:00
Aarav Borthakur
210296a71f
Integrate Rockset as a document loader (#7681)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

Integrate [Rockset](https://rockset.com/docs/) as a document loader.

Issue: None
Dependencies: Nothing new (rockset's dependency was already added
[here](https://github.com/hwchase17/langchain/pull/6216))
Tag maintainer: @rlancemartin

I have added a test for the integration and an example notebook showing
its use. I ran `make lint` and everything looks good.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-14 07:58:13 -07:00
Samuel Berthe
7d4843fe84
feat(chains): adding ElasticsearchDatabaseChain for interacting with analytics database (#7686)
This pull request adds a ElasticsearchDatabaseChain chain for
interacting with analytics database, in the manner of the
SQLDatabaseChain.

Maintainer: @samber
Twitter handler: samuelberthe

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-14 10:30:57 -04:00
Daniel
6d88b23ef7
Update pgembedding.ipynb (#7699)
Update the extension name. It changed from pg_hnsw to pg_embedding.

Thank you. I missed this in my previous commit.
2023-07-14 08:39:01 -04:00
Richy Wang
45bb414be2
Add LLM for Alibaba's Damo Academy's Tongyi Qwen API (#7477)
- Add langchain.llms.Tonyi for text completion, in examples into the
Tonyi Text API,
- Add system tests.

Note async completion for the Text API is not yet supported and will be
included in a future PR.

Dependencies: dashscope. It will be installed manually cause it is not
need by everyone.

Happy for feedback on any aspect of this PR @hwchase17 @baskaryan.
2023-07-14 01:58:22 -04:00
Lance Martin
6325a3517c
Make recursive loader yield while crawling (#7568)
Support actual lazy_load since it can take a while to crawl larger
directories.
2023-07-13 21:55:20 -07:00
UmerHA
82f3e32d8d
[Small upgrade] Allow document limit in AzureCognitiveSearchRetriever (#7690)
Multiple people have asked in #5081 for a way to limit the documents
returned from an AzureCognitiveSearchRetriever. This PR adds the `top_n`
parameter to allow that.


Twitter handle:
 [@UmerHAdil](twitter.com/umerHAdil)
2023-07-13 23:04:40 -04:00
Daniel
854f3fe9b1
Update pgembedding.ipynb (#7682)
Correct links to the pg_embedding repository and the Neon documentation.
2023-07-13 19:54:07 -04:00
Jasper
fbc97a77ed
add browserless loader (#7562)
# Browserless

Added support for Browserless' `/content` endpoint as a document loader.

### About Browserless

Browserless is a cloud service that provides access to headless Chrome
browsers via a REST API. It allows developers to automate Chromium in a
serverless fashion without having to configure and maintain their own
Chrome infrastructure.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-13 13:18:28 -07:00
frangin2003
c7b687e944
Simplify GraphQL Tool Initialization documentation by Removing 'llm' Argument (#7651)
This PR is aimed at enhancing the clarity of the documentation in the
langchain project.

**Description**:
In the graphql.ipynb file, I have removed the unnecessary 'llm' argument
from the initialization process of the GraphQL tool (of type
_EXTRA_OPTIONAL_TOOLS). The 'llm' argument is not required for this
process. Its presence could potentially confuse users. This modification
simplifies the understanding of tool initialization and minimizes
potential confusion.

**Issue**: Not applicable, as this is a documentation improvement.

**Dependencies**: None.

**I kindly request a review from the following maintainer**: @hinthornw,
who is responsible for Agents / Tools / Toolkits.

No new integration is being added in this PR, hence no need for a test
or an example notebook.

Please see the changes for more detail and let me know if any further
modification is necessary.
2023-07-13 14:52:07 -04:00
Matt Adams
98e1bbfbbd
Add missing dependencies to apify.ipynb (#6331)
Fixes errors caused by missing dependencies when running the notebook.
2023-07-13 03:02:23 -04:00
Francisco Ingham
488d2d5da9
Entity extraction improvements (#6342)
Added fix to avoid irrelevant attributes being returned plus an example
of extracting unrelated entities and an exampe of using an 'extra_info'
attribute to extract unstructured data for an entity.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-13 02:16:05 -04:00
Bagatur
7f8ff2a317
add tagger nb (#7637) 2023-07-13 01:48:23 -04:00
Jason Fan
8effd90be0
Add new types of document transformers (#7379)
- Description: Add two new document transformers that translates
documents into different languages and converts documents into q&a
format to improve vector search results. Uses OpenAI function calling
via the [doctran](https://github.com/psychic-api/doctran/tree/main)
library.
  - Issue: N/A
  - Dependencies: `doctran = "^0.0.5"`
  - Tag maintainer: @rlancemartin @eyurtsev @hwchase17 
  - Twitter handle: @psychicapi or @jfan001

Notes
- Adheres to the `DocumentTransformer` abstraction set by @dev2049 in
#3182
- refactored `EmbeddingsRedundantFilter` to put it in a file under a new
`document_transformers` module
- Added basic docs for `DocumentInterrogator`, `DocumentTransformer` as
well as the existing `EmbeddingsRedundantFilter`

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 23:53:30 -04:00
Gaurang Pawar
53722dcfdc
Fixed a typo in pinecone_hybrid_search.ipynb (#7627)
Fixed a small typo in documentation
2023-07-12 23:46:41 -04:00
Yaroslav Halchenko
0d92a7f357
codespell: workflow, config + some (quite a few) typos fixed (#6785)
Probably the most  boring PR to review ;)

Individual commits might be easier to digest

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2023-07-12 16:20:08 -04:00
Sam
931e68692e
Adds a chain around sympy for symbolic math (#6834)
- Description: Adds a new chain that acts as a wrapper around Sympy to
give LLMs the ability to do some symbolic math.
- Dependencies: SymPy

---------

Co-authored-by: sreiswig <sreiswig@github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 15:17:32 -04:00
ausboss
50316f6477
Adding LLM wrapper for Kobold AI (#7560)
- Description: add wrapper that lets you use KoboldAI api in langchain
  - Issue: n/a
  - Dependencies: none extra, just what exists in lanchain
  - Tag maintainer: @baskaryan 
  - Twitter handle: @zanzibased
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-12 03:48:12 -04:00
os1ma
2667ddc686
Fix make docs_build and related scripts (#7276)
**Description: a description of the change**

Fixed `make docs_build` and related scripts which caused errors. There
are several changes.

First, I made the build of the documentation and the API Reference into
two separate commands. This is because it takes less time to build. The
commands for documents are `make docs_build`, `make docs_clean`, and
`make docs_linkcheck`. The commands for API Reference are `make
api_docs_build`, `api_docs_clean`, and `api_docs_linkcheck`.

It looked like `docs/.local_build.sh` could be used to build the
documentation, so I used that. Since `.local_build.sh` was also building
API Rerefence internally, I removed that process. `.local_build.sh` also
added some Bash options to stop in error or so. Futher more added `cd
"${SCRIPT_DIR}"` at the beginning so that the script will work no matter
which directory it is executed in.

`docs/api_reference/api_reference.rst` is removed, because which is
generated by `docs/api_reference/create_api_rst.py`, and added it to
.gitignore.

Finally, the description of CONTRIBUTING.md was modified.

**Issue: the issue # it fixes (if applicable)**

https://github.com/hwchase17/langchain/issues/6413

**Dependencies: any dependencies required for this change**

`nbdoc` was missing in group docs so it was added. I installed it with
the `poetry add --group docs nbdoc` command. I am concerned if any
modifications are needed to poetry.lock. I would greatly appreciate it
if you could pay close attention to this file during the review.

**Tag maintainer**
- General / Misc / if you don't know who to tag: @baskaryan

If this PR needs any additional changes, I'll be happy to make them!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 22:05:14 -04:00
schop-rob
e811c5e8c6
Add OpenAI organization ID to docs (#7398)
Description: I added an example of how to reference the OpenAI API
Organization ID, because I couldn't find it before. In the example, it
is mentioned how to achieve this using environment variables as well as
parameters for the OpenAI()-class
Issue: -
Dependencies: -
Twitter @schop-rob
2023-07-11 20:51:58 -04:00
Kenny
8741e55e7c
Template formats documentation (#7404)
Simple addition to the documentation, adding the correct import
statement & showcasing using Python FStrings.
2023-07-11 18:24:24 -04:00
Kacper Łukawski
1f83b5f47e
Reuse the existing collection if configured properly in Qdrant.from_texts (#7530)
This PR changes the behavior of `Qdrant.from_texts` so the collection is
reused if not requested to recreate it. Previously, calling
`Qdrant.from_texts` or `Qdrant.from_documents` resulted in removing the
old data which was confusing for many.
2023-07-11 16:24:35 -04:00
Felix Brockmeier
406a9dc11f
Add notebook example for Lemon AI NLP Workflow Automation (#7556)
- Description: Added notebook to LangChain docs that explains how to use
Lemon AI NLP Workflow Automation tool with Langchain
  
- Issue: not applicable
  
- Dependencies: not applicable
  
- Tag maintainer: @agola11
  
- Twitter handle: felixbrockm
2023-07-11 15:15:11 -04:00
Bagatur
d2137eea9f
fix cpal docs (#7545) 2023-07-11 11:07:45 -04:00
Boris
9129318466
CPAL (#6255)
# Causal program-aided language (CPAL) chain

## Motivation

This builds on the recent [PAL](https://arxiv.org/abs/2211.10435) to
stop LLM hallucination. The problem with the
[PAL](https://arxiv.org/abs/2211.10435) approach is that it hallucinates
on a math problem with a nested chain of dependence. The innovation here
is that this new CPAL approach includes causal structure to fix
hallucination.

For example, using the below word problem, PAL answers with 5, and CPAL
answers with 13.

    "Tim buys the same number of pets as Cindy and Boris."
    "Cindy buys the same number of pets as Bill plus Bob."
    "Boris buys the same number of pets as Ben plus Beth."
    "Bill buys the same number of pets as Obama."
    "Bob buys the same number of pets as Obama."
    "Ben buys the same number of pets as Obama."
    "Beth buys the same number of pets as Obama."
    "If Obama buys one pet, how many pets total does everyone buy?"

The CPAL chain represents the causal structure of the above narrative as
a causal graph or DAG, which it can also plot, as shown below.


![complex-graph](https://github.com/hwchase17/langchain/assets/367522/d938db15-f941-493d-8605-536ad530f576)

.

The two major sections below are:

1. Technical overview
2. Future application

Also see [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.


## 1. Technical overview

### CPAL versus PAL

Like [PAL](https://arxiv.org/abs/2211.10435), CPAL intends to reduce
large language model (LLM) hallucination.

The CPAL chain is different from the PAL chain for a couple of reasons. 

* CPAL adds a causal structure (or DAG) to link entity actions (or math
expressions).
* The CPAL math expressions are modeling a chain of cause and effect
relations, which can be intervened upon, whereas for the PAL chain math
expressions are projected math identities.

PAL's generated python code is wrong. It hallucinates when complexity
increases.

```python
def solution():
    """Tim buys the same number of pets as Cindy and Boris.Cindy buys the same number of pets as Bill plus Bob.Boris buys the same number of pets as Ben plus Beth.Bill buys the same number of pets as Obama.Bob buys the same number of pets as Obama.Ben buys the same number of pets as Obama.Beth buys the same number of pets as Obama.If Obama buys one pet, how many pets total does everyone buy?"""
    obama_pets = 1
    tim_pets = obama_pets
    cindy_pets = obama_pets + obama_pets
    boris_pets = obama_pets + obama_pets
    total_pets = tim_pets + cindy_pets + boris_pets
    result = total_pets
    return result  # math result is 5
```

CPAL's generated python code is correct.

```python
story outcome data
    name                                   code  value      depends_on
0  obama                                   pass    1.0              []
1   bill               bill.value = obama.value    1.0         [obama]
2    bob                bob.value = obama.value    1.0         [obama]
3    ben                ben.value = obama.value    1.0         [obama]
4   beth               beth.value = obama.value    1.0         [obama]
5  cindy   cindy.value = bill.value + bob.value    2.0     [bill, bob]
6  boris   boris.value = ben.value + beth.value    2.0     [ben, beth]
7    tim  tim.value = cindy.value + boris.value    4.0  [cindy, boris]

query data
{
    "question": "how many pets total does everyone buy?",
    "expression": "SELECT SUM(value) FROM df",
    "llm_error_msg": ""
}
# query result is 13
```

Based on the comments below, CPAL's intended location in the library is
`experimental/chains/cpal` and PAL's location is`chains/pal`.

### CPAL vs Graph QA

Both the CPAL chain and the Graph QA chain extract entity-action-entity
relations into a DAG.

The CPAL chain is different from the Graph QA chain for a few reasons.

* Graph QA does not connect entities to math expressions
* Graph QA does not associate actions in a sequence of dependence.
* Graph QA does not decompose the narrative into these three parts:
  1. Story plot or causal model
  4. Hypothetical question
  5. Hypothetical condition 

### Evaluation

Preliminary evaluation on simple math word problems shows that this CPAL
chain generates less hallucination than the PAL chain on answering
questions about a causal narrative. Two examples are in [this jupyter
notebook](https://github.com/borisdev/langchain/blob/master/docs/extras/modules/chains/additional/cpal.ipynb)
doc.

## 2. Future application

### "Describe as Narrative, Test as Code"

The thesis here is that the Describe as Narrative, Test as Code approach
allows you to represent a causal mental model both as code and as a
narrative, giving you the best of both worlds.

#### Why describe a causal mental mode as a narrative?

The narrative form is quick. At a consensus building meeting, people use
narratives to persuade others of their causal mental model, aka. plan.
You can share, version control and index a narrative.

#### Why test a causal mental model as a code?

Code is testable, complex narratives are not. Though fast, narratives
are problematic as their complexity increases. The problem is LLMs and
humans are prone to hallucination when predicting the outcomes of a
narrative. The cost of building a consensus around the validity of a
narrative outcome grows as its narrative complexity increases. Code does
not require tribal knowledge or social power to validate.

Code is composable, complex narratives are not. The answer of one CPAL
chain can be the hypothetical conditions of another CPAL Chain. For
stochastic simulations, a composable plan can be integrated with the
[DoWhy library](https://github.com/py-why/dowhy). Lastly, for the
futuristic folk, a composable plan as code allows ordinary community
folk to design a plan that can be integrated with a blockchain for
funding.

An explanation of a dependency planning application is
[here.](https://github.com/borisdev/cpal-llm-chain-demo)

--- 
Twitter handle: @boris_dev

---------

Co-authored-by: Boris Dev <borisdev@Boriss-MacBook-Air.local>
2023-07-11 10:11:21 -04:00
Alejandra De Luna
2e4047e5e7
feat: support generate as an early stopping method for OpenAIFunctionsAgent (#7229)
This PR proposes an implementation to support `generate` as an
`early_stopping_method` for the new `OpenAIFunctionsAgent` class.

The motivation behind is to facilitate the user to set a maximum number
of actions the agent can take with `max_iterations` and force a final
response with this new agent (as with the `Agent` class).

The following changes were made:

- The `OpenAIFunctionsAgent.return_stopped_response` method was
overwritten to support `generate` as an `early_stopping_method`
- A boolean `with_functions` parameter was added to the
`OpenAIFunctionsAgent.plan` method

This way the `OpenAIFunctionsAgent.return_stopped_response` method can
call the `OpenAIFunctionsAgent.plan` method with `with_function=False`
when the `early_stopping_method` is set to `generate`, making a call to
the LLM with no functions and forcing a final response from the
`"assistant"`.

  - Relevant maintainer: @hinthornw
  - Twitter handle: @aledelunap

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-11 09:25:02 -04:00
Lance Martin
28d2b213a4
Update landing page for "question answering over documents" (#7152)
Improve documentation for a central use-case, qa / chat over documents.

This will be merged as an update to `index.mdx`
[here](https://python.langchain.com/docs/use_cases/question_answering/).

Testing w/ local Docusaurus server:

```
From `docs` directory:
mkdir _dist
cp -r {docs_skeleton,snippets} _dist
cp -r extras/* _dist/docs_skeleton/docs
cd _dist/docs_skeleton
yarn install
yarn start
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-10 14:15:13 -07:00
Adilkhan Sarsen
5debd5043e
Added deeplake use case examples of the new features (#6528)
<!--
Thank you for contributing to LangChain! Your PR will appear in our
release under the title you set. Please make sure it highlights your
valuable contribution.

Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.

After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.

Finally, we'd love to show appreciation for your contribution - if you'd
like us to shout you out on Twitter, please also include your handle!
-->

<!-- Remove if not applicable -->

Fixes # (issue)

#### Before submitting

<!-- If you're adding a new integration, please include:

1. a test for the integration - favor unit tests that does not rely on
network access.
2. an example notebook showing its use


See contribution guidelines for more information on how to write tests,
lint
etc:


https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->

#### Who can review?

Tag maintainers/contributors who might be interested:

<!-- For a quicker response, figure out the right person to tag with @

  @hwchase17 - project lead

  Tracing / Callbacks
  - @agola11

  Async
  - @agola11

  DataLoaders
  - @eyurtsev

  Models
  - @hwchase17
  - @agola11

  Agents / Tools / Toolkits
  - @hwchase17

  VectorStores / Retrievers / Memory
  - @dev2049

 -->
 
 1. Added use cases of the new features
 2. Done some code refactoring

---------

Co-authored-by: Ivo Stranic <istranic@gmail.com>
2023-07-10 07:04:29 -07:00
Kazuki Maeda
92b4418c8c
Datadog logs loader (#7356)
### Description
Created a Loader to get a list of specific logs from Datadog Logs.

### Dependencies
`datadog_api_client` is required.

### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-10 04:27:55 -04:00
Yifei Song
7d29bb2c02
Add Xorbits Dataframe as a Document Loader (#7319)
- [Xorbits](https://doc.xorbits.io/en/latest/) is an open-source
computing framework that makes it easy to scale data science and machine
learning workloads in parallel. Xorbits can leverage multi cores or GPUs
to accelerate computation on a single machine, or scale out up to
thousands of machines to support processing terabytes of data.

- This PR added support for the Xorbits document loader, which allows
langchain to leverage Xorbits to parallelize and distribute the loading
of data.
- Dependencies: This change requires the Xorbits library to be installed
in order to be used.
`pip install xorbits`
- Request for review: @rlancemartin, @eyurtsev
- Twitter handle: https://twitter.com/Xorbitsio

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-10 04:24:47 -04:00
Paul-Emile Brotons
d2cf0d16b3
adding max_marginal_relevance_search method to MongoDBAtlasVectorSearch (#7310)
Adding a maximal_marginal_relevance method to the
MongoDBAtlasVectorSearch vectorstore enhances the user experience by
providing more diverse search results

Issue: #7304
2023-07-10 04:04:19 -04:00
Matt Robinson
bcab894f4e
feat: Add UnstructuredTSVLoader (#7367)
### Summary

Adds an `UnstructuredTSVLoader` for TSV files. Also updates the doc
strings for `UnstructuredCSV` and `UnstructuredExcel` loaders.

### Testing

```python
from langchain.document_loaders.tsv import UnstructuredTSVLoader

loader = UnstructuredTSVLoader(
    file_path="example_data/mlb_teams_2012.csv", mode="elements"
)
docs = loader.load()
```
2023-07-10 03:07:10 -04:00
nikkie
dfc3f83b0f
docs(vectorstores/integrations/chroma): Fix loading and saving (#7437)
- Description: Fix loading and saving code about Chroma
- Issue: the issue #7436 
- Dependencies: -
- Twitter handle: https://twitter.com/ftnext
2023-07-10 02:05:15 -04:00
Daniel Chalef
c7f7788d0b
Add ZepMemory; improve ZepChatMessageHistory handling of metadata; Fix bugs (#7444)
Hey @hwchase17 - 

This PR adds a `ZepMemory` class, improves handling of Zep's message
metadata, and makes it easier for folks building custom chains to
persist metadata alongside their chat history.

We've had plenty confused users unfamiliar with ChatMessageHistory
classes and how to wrap the `ZepChatMessageHistory` in a
`ConversationBufferMemory`. So we've created the `ZepMemory` class as a
light wrapper for `ZepChatMessageHistory`.

Details:
- add ZepMemory, modify notebook to demo use of ZepMemory
- Modify summary to be SystemMessage
- add metadata argument to add_message; add Zep metadata to
Message.additional_kwargs
- support passing in metadata
2023-07-10 01:53:49 -04:00
Nolan
5da9f9abcb
docs(agents/toolkits): Fix error in document_comparison_toolkit.ipynb (#7417)
Replace this comment with:
- Description: Removes unneeded output warning in documentation at
https://python.langchain.com/docs/modules/agents/toolkits/document_comparison_toolkit
  - Issue: -
  - Dependencies: -
  - Tag maintainer: @baskaryan
  - Twitter handle: @finnless
2023-07-08 19:51:08 -04:00
Delgermurun
a1603fccfb
integrate JinaChat (#6927)
Integration with https://chat.jina.ai/api. It is OpenAI compatible API.

- Twitter handle:
[https://twitter.com/JinaAI_](https://twitter.com/JinaAI_)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-08 02:17:04 -04:00
Roger Yu
633b673b85
Update pinecone.ipynb (#7382)
Fix typo
2023-07-08 01:48:03 -04:00
Joshua Carroll
705d2f5b92
Update the API Reference link in Streamlit integration docs (#7377)
This page:


https://python.langchain.com/docs/modules/callbacks/integrations/streamlit

Has a bad API Reference link currently. This PR fixes it to the correct
link.

Also updates the embedded app link to
https://langchain-mrkl.streamlit.app/ (better name) which is hosted in
langchain-ai/streamlit-agent repo
2023-07-07 17:35:57 -04:00
Georges Petrov
ec033ae277
Rename Databerry to Chaindesk (#7022)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-07 17:28:04 -04:00
Harrison Chase
7cdf97ba9b
Harrison/add to imports (#7370)
pgvector cleanup
2023-07-07 16:27:44 -04:00
Bagatur
4d427b2397
Base language model docstrings (#7104) 2023-07-07 16:09:10 -04:00
Alex Gamble
df746ad821
Add a callback handler for Context (https://getcontext.ai) (#7151)
### Description

Adding a callback handler for Context. Context is a product analytics
platform for AI chat experiences to help you understand how users are
interacting with your product.

I've added the callback library + an example notebook showing its use.

### Dependencies

Requires the user to install the `context-python` library. The library
is lazily-loaded when the callback is instantiated.

### Announcing the feature

We spoke with Harrison a few weeks ago about also doing a blog post
announcing our integration, so will coordinate this with him. Our
Twitter handle for the company is @getcontextai, and the founders are
@_agamble and @HenrySG.

Thanks in advance!
2023-07-07 15:33:29 -04:00
German Martin
3ce4e46c8c
The Fellowship of the Vectors: New Embeddings Filter using clustering. (#7015)
Continuing with Tolkien inspired series of langchain tools. I bring to
you:
**The Fellowship of the Vectors**, AKA EmbeddingsClusteringFilter.
This document filter uses embeddings to group vectors together into
clusters, then allows you to pick an arbitrary number of documents
vector based on proximity to the cluster centers. That's a
representative sample of the cluster.

The original idea is from [Greg Kamradt](https://github.com/gkamradt)
from this video (Level4):
https://www.youtube.com/watch?v=qaPMdcCqtWk&t=365s

I added few tricks to make it a bit more versatile, so you can
parametrize what to do with duplicate documents in case of cluster
overlap: replace the duplicates with the next closest document or remove
it. This allow you to use it as an special kind of redundant filter too.
Additionally you can choose 2 diff orders: grouped by cluster or
respecting the original retriever scores.
In my use case I was using the docs grouped by cluster to run refine
chains per cluster to generate summarization over a large corpus of
documents.
Let me know if you want to change anything!

@rlancemartin, @eyurtsev, @hwchase17,

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-07 10:28:17 -07:00
Bagatur
d1c7237034
openai fn update nb (#7352) 2023-07-07 11:52:21 -04:00
Bagatur
1c8cff32f1
Generic OpenAI fn chain (#7270)
Add loading functions for openai function chains and add docs page
2023-07-07 05:44:53 -04:00
OwenElliott
3074306ae1
Marqo Vector Store Examples & Type Hints (#7326)
This PR improves the example notebook for the Marqo vectorstore
implementation by adding a new RetrievalQAWithSourcesChain example. The
`embedding` parameter in `from_documents` has its type updated to
`Union[Embeddings, None]` and a default parameter of None because this
is ignored in Marqo.

This PR also upgrades the Marqo version to 0.11.0 to remove the device
parameter after a breaking change to the API.

Related to #7068 @tomhamer @hwchase17

---------

Co-authored-by: Tom Hamer <tom@marqo.ai>
2023-07-07 04:11:20 -04:00
Bagatur
a9c5b4bcea
Bagatur/clarifai update (#7324)
This PR improves upon the Clarifai LangChain integration with improved docs, errors, args and the addition of embedding model support in LancChain for Clarifai's embedding models and an overview of the various ways you can integrate with Clarifai added to the docs.

---------

Co-authored-by: Matthew Zeiler <zeiler@clarifai.com>
2023-07-07 02:23:20 -04:00
John Landahl
e047541b5f
Corrected a typo in elasticsearch.ipynb (#7318)
Simple typo fix
2023-07-07 01:35:32 -04:00
Leonid Ganeline
6ff9e9b34a
updated huggingface_hub examples (#7292)
Added examples for models:
- Google `Flan`
- TII `Falcon`
- Salesforce `XGen`
2023-07-06 15:04:37 -04:00
Dídac Sabatés
e0cb3ea90c
Fix sql_database.ipynb link (#6525)
Looks like the
[SQLDatabaseChain](https://langchain.readthedocs.io/en/latest/modules/chains/examples/sqlite.html)
in the SQL Database Agent page was broken I've change it to the SQL
Chain page
2023-07-06 13:07:37 -04:00
hayao-k
c23e16c459
docs: Fixed typos in Amazon Kendra Retriever documentation (#7261)
## Description
Fixed to the official service name Amazon Kendra.

## Tag maintainer
@baskaryan
2023-07-06 11:56:52 -04:00
zhaoshengbo
e8f24164f0
Improve the alibaba cloud opensearch vector store documentation (#6964)
Based on user feedback, we have improved the Alibaba Cloud OpenSearch
vector store documentation.

Co-authored-by: zhaoshengbo <shengbo.zsb@alibaba-inc.com>
2023-07-06 09:47:49 -04:00
Stefano Lottini
e61cfb6e99
FLARE Example notebook: switch to named arg to pass pydantic validation (#7267)
Adding the name of the parameter to comply with latest requirements by
Pydantic usage for BaseModels.
2023-07-06 09:32:00 -04:00
os1ma
b151d4257a
docs: Update documentation for Wikipedia tool to use WikipediaQueryRun (#7258)
**Description**
In the following page, "Wikipedia" tool is explained.

https://python.langchain.com/docs/modules/agents/tools/integrations/wikipedia

However, the WikipediaAPIWrapper being used is not a tool. This PR
updated the documentation to use a tool WikipediaQueryRun.

**Issue**
None

**Tag maintainer**
Agents / Tools / Toolkits: @hinthornw
2023-07-06 09:29:38 -04:00
Shantanu Nair
f773c21723
Update supabase match_docs ddl and notebook to use expected id type (#7257)
- Description: Switch supabase match function DDL to use expected uuid
type instead of bigint
- Issue: https://github.com/hwchase17/langchain/issues/6743,
https://github.com/hwchase17/langchain/issues/7179
  - Tag maintainer:  @rlancemartin, @eyurtsev
  - Twitter handle: https://twitter.com/ShantanuNair
2023-07-06 09:22:41 -04:00
Myeongseop Kim
0e878ccc2d
Add HumanInputChatModel (#7256)
- Description: This is a chat model equivalent of HumanInputLLM. An
example notebook is also added.
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: N/A
2023-07-06 09:21:03 -04:00
Harrison Chase
52b016920c
Harrison/update anthropic (#7237)
Co-authored-by: William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>
2023-07-05 21:02:35 -04:00
Hashem Alsaket
6aa66fd2b0
Update Hugging Face Hub notebook (#7236)
Description: `flan-t5-xl` hangs, updated to `flan-t5-xxl`. Tested all
stabilityai LLMs- all hang so removed from tutorial. Temperature > 0 to
prevent unintended determinism.
Issue: #3275 
Tag maintainer: @baskaryan
2023-07-05 20:45:02 -04:00
Mike Nitsenko
d669b9ece9
Document loader for Cube Semantic Layer (#6882)
### Description

This pull request introduces the "Cube Semantic Layer" document loader,
which demonstrates the retrieval of Cube's data model metadata in a
format suitable for passing to LLMs as embeddings. This enhancement aims
to provide contextual information and improve the understanding of data.

Twitter handle:
@the_cube_dev

---------

Co-authored-by: rlm <pexpresss31@gmail.com>
2023-07-05 15:18:12 -07:00
Tom
e533da8bf2
Adding Marqo to vectorstore ecosystem (#7068)
This PR brings in a vectorstore interface for
[Marqo](https://www.marqo.ai/).

The Marqo vectorstore exposes some of Marqo's functionality in addition
the the VectorStore base class. The Marqo vectorstore also makes the
embedding parameter optional because inference for embeddings is an
inherent part of Marqo.

Docs, notebook examples and integration tests included.

Related PR:
https://github.com/hwchase17/langchain/pull/2807

---------

Co-authored-by: Tom Hamer <tom@marqo.ai>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-05 14:44:12 -07:00
Harrison Chase
6711854e30
Harrison/dataforseo (#7214)
Co-authored-by: Alexander <sune357@gmail.com>
2023-07-05 16:02:02 -04:00
Conrad Fernandez
6eff0fa2ca
Added documentation for add_texts function for Pinecone integration (#7134)
- Description: added some documentation to the Pinecone vector store
docs page.
- Issue: #7126 
- Dependencies: None
- Tag maintainer: @baskaryan 

I can add more documentation on the Pinecone integration functions as I
am going to go in great depth into this area. Just wanted to check with
the maintainers is if this is all good.
2023-07-05 13:11:37 -04:00
felixocker
db98c44f8f
Support for SPARQL (#7165)
# [SPARQL](https://www.w3.org/TR/rdf-sparql-query/) for
[LangChain](https://github.com/hwchase17/langchain)

## Description
LangChain support for knowledge graphs relying on W3C standards using
RDFlib: SPARQL/ RDF(S)/ OWL with special focus on RDF \
* Works with local files, files from the web, and SPARQL endpoints
* Supports both SELECT and UPDATE queries
* Includes both a Jupyter notebook with an example and integration tests

## Contribution compared to related PRs and discussions
* [Wikibase agent](https://github.com/hwchase17/langchain/pull/2690) -
uses SPARQL, but specifically for wikibase querying
* [Cypher qa](https://github.com/hwchase17/langchain/pull/5078) - graph
DB question answering for Neo4J via Cypher
* [PR 6050](https://github.com/hwchase17/langchain/pull/6050) - tries
something similar, but does not cover UPDATE queries and supports only
RDF
* Discussions on [w3c mailing list](mailto:semantic-web@w3.org) related
to the combination of LLMs (specifically ChatGPT) and knowledge graphs

## Dependencies
* [RDFlib](https://github.com/RDFLib/rdflib)

## Tag maintainer
Graph database related to memory -> @hwchase17
2023-07-05 13:00:16 -04:00
Prakul Agarwal
38f853dfa3
Fixed typos in MongoDB Atlas Vector Search documentation (#7174)
Fix for typos in MongoDB Atlas Vector Search documentation
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-05 12:48:00 -04:00
Raouf Chebri
6fc24743b7
Add pg_hnsw vectorstore integration (#6893)
Hi @rlancemartin, @eyurtsev!

- Description: Adding HNSW extension support for Postgres. Similar to
pgvector vectorstore, with 3 differences
      1. it uses HNSW extension for exact and ANN searches, 
      2. Vectors are of type array of real
      3. Only supports L2
      
- Dependencies: [HNSW](https://github.com/knizhnik/hnsw) extension for
Postgres
  
  - Example:
  ```python
    db = HNSWVectoreStore.from_documents(
      embedding=embeddings,
      documents=docs,
      collection_name=collection_name,
      connection_string=connection_string
  )
  
  query = "What did the president say about Ketanji Brown Jackson"
docs_with_score: List[Tuple[Document, float]] =
db.similarity_search_with_score(query)
  ```

The example notebook is in the PR too.
2023-07-05 08:10:10 -07:00
Simon Cheung
81eebc4070
Add HugeGraphQAChain to support gremlin generating chain (#7132)
[Apache HugeGraph](https://github.com/apache/incubator-hugegraph) is a
convenient, efficient, and adaptable graph database, compatible with the
Apache TinkerPop3 framework and the Gremlin query language.

In this PR, the HugeGraph and HugeGraphQAChain provide the same
functionality as the existing integration with Neo4j and enables query
generation and question answering over HugeGraph database. The
difference is that the graph query language supported by HugeGraph is
not cypher but another very popular graph query language
[Gremlin](https://tinkerpop.apache.org/gremlin.html).

A notebook example and a simple test case have also been added.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-04 10:21:21 -06:00
Saverio Proto
5585607654
Improve Bing Search example (#7128)
# Description

Improve Bing Search example:
2023-07-04 09:58:03 -06:00
Lance Martin
265c285057
Fix GPT4All bug w/ "n_ctx" param (#7093)
Running `GPT4All` per the
[docs](https://python.langchain.com/docs/modules/model_io/models/llms/integrations/gpt4all),
I see:

```
$ from langchain.llms import GPT4All
$ model = GPT4All(model=local_path)
$ model("The capital of France is ", max_tokens=10)
TypeError: generate() got an unexpected keyword argument 'n_ctx'
```

It appears `n_ctx` is [no longer a supported
param](https://docs.gpt4all.io/gpt4all_python.html#gpt4all.gpt4all.GPT4All.generate)
in the GPT4All API from https://github.com/nomic-ai/gpt4all/pull/1090.

It now uses `max_tokens`, so I set this.

And I also set other defaults used in GPT4All client
[here](https://github.com/nomic-ai/gpt4all/blob/main/gpt4all-bindings/python/gpt4all/gpt4all.py).

Confirm it now works:
```
$ from langchain.llms import GPT4All
$ model = GPT4All(model=local_path)
$ model("The capital of France is ", max_tokens=10)
< Model logging > 
"....Paris."
```

---------

Co-authored-by: R. Lance Martin <rlm@Rs-MacBook-Pro.local>
2023-07-04 08:53:52 -07:00
Stefano Lottini
6631fd5168
Align cassio versions between examples for Cassandra integration (#7099)
Just reducing confusion by requiring cassio>=0.0.7 consistently across
examples.
2023-07-04 04:21:48 -06:00
Lance Martin
9ca4c54428
Minor updates to notebook for MultiQueryRetriever (#7102)
* Add an easier-to-run example.
* Add logging per https://github.com/hwchase17/langchain/pull/6891.
* Updated params per https://github.com/hwchase17/langchain/pull/5962.

---------

Co-authored-by: R. Lance Martin <rlm@Rs-MacBook-Pro.local>
Co-authored-by: Lance Martin <lance@langchain.dev>
2023-07-03 17:32:50 -07:00
genewoo
e49abd1277
Add Metal support to llama.cpp doc (#7092)
- Description: Add Metal support to llama.cpp doc
  - Issue: #7091 
  - Dependencies: N/A
  - Twitter handle: gene_wu
2023-07-03 13:35:39 -06:00
rjarun8
e2d61ab85a
Add SpacyEmbeddings class (#6967)
- Description: Added a new SpacyEmbeddings class for generating
embeddings using the Spacy library.
- Issue: Sentencebert/Bert/Spacy/Doc2vec embedding support #6952
- Dependencies: This change requires the Spacy library and the
'en_core_web_sm' Spacy model.
- Tag maintainer: @dev2049
- Twitter handle: N/A

This change includes a new SpacyEmbeddings class, but does not include a
test or an example notebook.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-03 09:38:31 -06:00