I want to extend my heartfelt gratitude to the creator for masterfully
crafting this remarkable application. 🙌 I am truly impressed by the
meticulous attention to grammar and spelling in the documentation, which
undoubtedly contributes to a polished and seamless reader experience.
As always, your feedback holds immense value and is greatly appreciated.
@baskaryan , @hwchase17
I want to convey my deep appreciation to the creator for their expert
craftsmanship in developing this exceptional application. 👏 The
remarkable dedication to upholding impeccable grammar and spelling in
the documentation significantly enhances the polished and seamless
experience for readers.
I want to stress that your feedback is invaluable to us and is genuinely
cherished.
With gratitude,
@baskaryan, @hwchase17
In this commit, I have made a modification to the term "Langchain" to
correctly reflect the project's name as "LangChain". This change ensures
consistency and accuracy throughout the codebase and documentation.
@baskaryan , @hwchase17
Refined the example in router.ipynb by addressing a minor typographical
error. The typo "rins" has been corrected to "rains" in the code snippet
that demonstrates the usage of the MultiPromptChain. This change ensures
accuracy and consistency in the provided code example.
This improvement enhances the readability and correctness of the
notebook, making it easier for users to understand and follow the
demonstration. The commit aims to maintain the quality and accuracy of
the content within the repository.
Thank you for your attention to detail, and please review the change at
your convenience.
@baskaryan , @hwchase17
- Description: Fix a minor variable naming inconsistency in a code
snippet in the docs
- Issue: N/A
- Dependencies: none
- Tag maintainer: N/A
- Twitter handle: N/A
- Description: Added improvements in Nebula LLM to perform auto-retry;
more generation parameters supported. Conversation is no longer required
to be passed in the LLM object. Examples are updated.
- Issue: N/A
- Dependencies: N/A
- Tag maintainer: @baskaryan
- Twitter handle: symbldotai
---------
Co-authored-by: toshishjawale <toshish@symbl.ai>
Update documentation and URLs for the Langchain Context integration.
We've moved from getcontext.ai to context.ai \o/
Thanks in advance for the review!
Now with ElasticsearchStore VectorStore merged, i've added support for
the self-query retriever.
I've added a notebook also to demonstrate capability. I've also added
unit tests.
**Credit**
@elastic and @phoey1 on twitter.
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support
- [x] Metadata support
- [x] Metadata Filter support
- [x] Retrieval Strategies
- [x] Approx
- [x] Approx with Hybrid
- [x] Exact
- [x] Custom
- [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests
- [x] Documentation
👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:
## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.
```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch
## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```
## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.
With `ElasticsearchStore` we have retrieval strategies:
### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index"
)
output = docsearch.similarity_search("foo", k=1)
```
### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
)
output = docsearch.similarity_search("foo", k=1)
```
### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.
This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.ApproxRetrievalStrategy(
query_model_id="sentence-transformers__all-minilm-l6-v2"
),
)
output = docsearch.similarity_search("foo", k=1)
```
### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`
```py
def my_custom_query(query_body: dict, query: str) -> dict:
return {"query": {"match": {"text": {"query": "bar"}}}}
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
)
docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)
```
### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.ExactRetrievalStrategy(),
)
output = docsearch.similarity_search("foo", k=1)
```
### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.
```py
texts = ["foo", "bar", "baz"]
docsearch = ElasticsearchStore.from_texts(
texts,
FakeEmbeddings(),
es_url="http://localhost:9200",
index_name="sample-index",
strategy=ElasticsearchStore.SparseVectorStrategy(),
)
output = docsearch.similarity_search("foo", k=1)
```
## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.
## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.
Twitter handles: @mgoin_ @neuralmagic
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Added SmartGPT workflow by providing SmartLLM wrapper around LLMs
Edit:
As @hwchase17 suggested, this should be a chain, not an LLM. I have
adapted the PR.
It is used like this:
```
from langchain.prompts import PromptTemplate
from langchain.chains import SmartLLMChain
from langchain.chat_models import ChatOpenAI
hard_question = "I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?"
hard_question_prompt = PromptTemplate.from_template(hard_question)
llm = ChatOpenAI(model_name="gpt-4")
prompt = PromptTemplate.from_template(hard_question)
chain = SmartLLMChain(llm=llm, prompt=prompt, verbose=True)
chain.run({})
```
Original text:
Added SmartLLM wrapper around LLMs to allow for SmartGPT workflow (as in
https://youtu.be/wVzuvf9D9BU). SmartLLM can be used wherever LLM can be
used. E.g:
```
smart_llm = SmartLLM(llm=OpenAI())
smart_llm("What would be a good company name for a company that makes colorful socks?")
```
or
```
smart_llm = SmartLLM(llm=OpenAI())
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=smart_llm, prompt=prompt)
chain.run("colorful socks")
```
SmartGPT consists of 3 steps:
1. Ideate - generate n possible solutions ("ideas") to user prompt
2. Critique - find flaws in every idea & select best one
3. Resolve - improve upon best idea & return it
Fixes#4463
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit adds the LangChain utility which allows for the real-time
retrieval of cryptocurrency exchange prices. With LangChain, users can
easily access up-to-date pricing information by running the command
".run(from_currency, to_currency)". This new feature provides a
convenient way to stay informed on the latest exchange rates and make
informed decisions when trading crypto.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Adds the ArcGISLoader class to
`langchain.document_loaders`
- Allows users to load data from ArcGIS Online, Portal, and similar
- Users can authenticate with `arcgis.gis.GIS` or retrieve public data
anonymously
- Uses the `arcgis.features.FeatureLayer` class to retrieve the data
- Defines the most relevant keywords arguments and accepts `**kwargs`
- Dependencies: Using this class requires `arcgis` and, optionally,
`bs4.BeautifulSoup`.
Tagging maintainers:
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Updated interactive walkthrough link in index.md to resolve 404 error.
Also, expressing deep gratitude to LangChain library developers for
their exceptional efforts 🥇 .
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Added a new use case category called "Web Scraping", and
a tutorial to scrape websites using OpenAI Functions Extraction chain to
the docs.
- Tag maintainer:@baskaryan @hwchase17 ,
- Twitter handle: https://www.linkedin.com/in/haiphunghiem/ (I'm on
LinkedIn mostly)
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
This PR introduces [Label Studio](https://labelstud.io/) integration
with LangChain via `LabelStudioCallbackHandler`:
- sending data to the Label Studio instance
- labeling dataset for supervised LLM finetuning
- rating model responses
- tracking and displaying chat history
- support for custom data labeling workflow
### Example
```
chat_llm = ChatOpenAI(callbacks=[LabelStudioCallbackHandler(mode="chat")])
chat_llm([
SystemMessage(content="Always use emojis in your responses."),
HumanMessage(content="Hey AI, how's your day going?"),
AIMessage(content="🤖 I don't have feelings, but I'm running smoothly! How can I help you today?"),
HumanMessage(content="I'm feeling a bit down. Any advice?"),
AIMessage(content="🤗 I'm sorry to hear that. Remember, it's okay to seek help or talk to someone if you need to. 💬"),
HumanMessage(content="Can you tell me a joke to lighten the mood?"),
AIMessage(content="Of course! 🎭 Why did the scarecrow win an award? Because he was outstanding in his field! 🌾"),
HumanMessage(content="Haha, that was a good one! Thanks for cheering me up."),
AIMessage(content="Always here to help! 😊 If you need anything else, just let me know."),
HumanMessage(content="Will do! By the way, can you recommend a good movie?"),
])
```
<img width="906" alt="image"
src="https://github.com/langchain-ai/langchain/assets/6087484/0a1cf559-0bd3-4250-ad96-6e71dbb1d2f3">
### Dependencies
- [label-studio](https://pypi.org/project/label-studio/)
- [label-studio-sdk](https://pypi.org/project/label-studio-sdk/)
https://twitter.com/labelstudiohq
---------
Co-authored-by: nik <nik@heartex.net>
As of the recent PR at #9043, after some testing we've realised that the
default values were not being used for `api_key` and `api_url`. Besides
that, the default for `api_key` was set to `argilla.apikey`, but since
the default values are intended for people using the Argilla Quickstart
(easy to run and setup), the defaults should be instead `owner.apikey`
if using Argilla 1.11.0 or higher, or `admin.apikey` if using a lower
version of Argilla.
Additionally, we've removed the f-string replacements from the
docstrings.
---------
Co-authored-by: Gabriel Martin <gabriel@argilla.io>
In second section it looks like a copy/paste from the first section and
doesn't include the specific embedding model mentioned in the example so
I added it for clarity.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
The table creation process in these examples commands do not match what
the recently updated functions in these example commands is looking for.
This change updates the type in the table creation command.
Issue Number for my report of the doc problem #7446
@rlancemartin and @eyurtsev I believe this is your area
Twitter: @j1philli
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.
- **Issue**: Not applicable.
- **Dependencies**: `betabageldb` PyPi package.
- **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
- **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
We ran `make format`, `make lint` and `make test` locally.
Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
---------
Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
## Description
This PR adds the `aembed_query` and `aembed_documents` async methods for
improving the embeddings generation for large documents. The
implementation uses asyncio tasks and gather to achieve concurrency as
there is no bedrock async API in boto3.
### Maintainers
@agola11
@aarora79
### Open questions
To avoid throttling from the Bedrock API, should there be an option to
limit the concurrency of the calls?
## Description:
This PR adds the Titan Takeoff Server to the available LLMs in
LangChain.
Titan Takeoff is an inference server created by
[TitanML](https://www.titanml.co/) that allows you to deploy large
language models locally on your hardware in a single command. Most
generative model architectures are included, such as Falcon, Llama 2,
GPT2, T5 and many more.
Read more about Titan Takeoff here:
-
[Blog](https://medium.com/@TitanML/introducing-titan-takeoff-6c30e55a8e1e)
- [Docs](https://docs.titanml.co/docs/titan-takeoff/getting-started)
#### Testing
As Titan Takeoff runs locally on port 8000 by default, no network access
is needed. Responses are mocked for testing.
- [x] Make Lint
- [x] Make Format
- [x] Make Test
#### Dependencies
No new dependencies are introduced. However, users will need to install
the titan-iris package in their local environment and start the Titan
Takeoff inferencing server in order to use the Titan Takeoff
integration.
Thanks for your help and please let me know if you have any questions.
cc: @hwchase17 @baskaryan
Expressing gratitude to the creator for crafting this remarkable
application. 🙌, Would like to Enhance grammar and spelling in the
documentation for a polished reader experience.
Your feedback is valuable as always
@baskaryan , @hwchase17 , @eyurtsev
This PR adds the ability to temporarily cache or persistently store
embeddings.
A notebook has been included showing how to set up the cache and how to
use it with a vectorstore.
- Description: Improvement in the Grobid loader documentation, typos and
suggesting to use the docker image instead of installing Grobid in local
(the documentation was also limited to Mac, while docker allow running
in any platform)
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @whitenoise
This pull request aims to ensure that the `OpenAICallbackHandler` can
properly calculate the total cost for Azure OpenAI chat models. The
following changes have resolved this issue:
- The `model_name` has been added to the ChatResult llm_output. Without
this, the default values of `gpt-35-turbo` were applied. This was
causing the total cost for Azure OpenAI's GPT-4 to be significantly
inaccurate.
- A new parameter `model_version` has been added to `AzureChatOpenAI`.
Azure does not include the model version in the response. With the
addition of `model_name`, this is not a significant issue for GPT-4
models, but it's an issue for GPT-3.5-Turbo. Version 0301 (default) of
GPT-3.5-Turbo on Azure has a flat rate of 0.002 per 1k tokens for both
prompt and completion. However, version 0613 introduced a split in
pricing for prompt and completion tokens.
- The `OpenAICallbackHandler` implementation has been updated with the
proper model names, versions, and cost per 1k tokens.
Unit tests have been added to ensure the functionality works as
expected; the Azure ChatOpenAI notebook has been updated with examples.
Maintainers: @hwchase17, @baskaryan
Twitter handle: @jjczopek
---------
Co-authored-by: Jerzy Czopek <jerzy.czopek@avanade.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Instruction for integration with Log10: an [open
source](https://github.com/log10-io/log10) proxiless LLM data management
and application development platform that lets you log, debug and tag
your Langchain calls
- Tag maintainer: @baskaryan
- Twitter handle: @log10io @coffeephoenix
Several examples showing the integration included
[here](https://github.com/log10-io/log10/tree/main/examples/logging) and
in the PR
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17
This PR passes linting and testing.
I added a test for the integration and an example notebook showing its
use.
This PR adds 8 new loaders:
* `AirbyteCDKLoader` This reader can wrap and run all python-based
Airbyte source connectors.
* Separate loaders for the most commonly used APIs:
* `AirbyteGongLoader`
* `AirbyteHubspotLoader`
* `AirbyteSalesforceLoader`
* `AirbyteShopifyLoader`
* `AirbyteStripeLoader`
* `AirbyteTypeformLoader`
* `AirbyteZendeskSupportLoader`
## Documentation and getting started
I added the basic shape of the config to the notebooks. This increases
the maintenance effort a bit, but I think it's worth it to make sure
people can get started quickly with these important connectors. This is
also why I linked the spec and the documentation page in the readme as
these two contain all the information to configure a source correctly
(e.g. it won't suggest using oauth if that's avoidable even if the
connector supports it).
## Document generation
The "documents" produced by these loaders won't have a text part
(instead, all the record fields are put into the metadata). If a text is
required by the use case, the caller needs to do custom transformation
suitable for their use case.
## Incremental sync
All loaders support incremental syncs if the underlying streams support
it. By storing the `last_state` from the reader instance away and
passing it in when loading, it will only load updated records.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: added filter to query methods in VectorStoreIndexWrapper
for filtering by metadata (i.e. search_kwargs)
- Tag maintainer: @rlancemartin, @eyurtsev
Updated the doc snippet on this topic as well. It took me a long while
to figure out how to filter the vectorstore by filename, so this might
help someone else out.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: I have added an example showing how to pass a custom
template to ConversationRetrievalChain. Instead of
CONDENSE_QUESTION_PROMPT we can pass any prompt in the argument
condense_question_prompt. Look in Use cases -> QA over Documents -> How
to -> Store and reference chat history,
- Issue: #8864,
- Dependencies: NA,
- Tag maintainer: @hinthornw,
- Twitter handle:
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This addresses some issues with introducing the Nebula LLM to LangChain
in this PR:
https://github.com/langchain-ai/langchain/pull/8876
This fixes the following:
- Removes `SYMBLAI` from variable names
- Fixes bug with `Bearer` for the API KEY
Thanks again in advance for your help!
cc: @hwchase17, @baskaryan
---------
Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Minor doc fix to awslambda tool notebook.
Add missing import for initialize_agent to awslambda agent example
Co-authored-by: Josh Hart <josharj@amazon.com>
Description:
Fixed inaccurate import in integrations:providers:bedrock documentation
In the current version of the bedrock documentation, page
https://python.langchain.com/docs/integrations/providers/bedrock it
states that the import is from langchain import Bedrock
This has been changed to from langchain.llms.bedrock import Bedrock as
stated in https://python.langchain.com/docs/integrations/llms/bedrock
Issue:
Not applicable
Dependencies
No dependencies required
Tag maintainer
@baskaryan
Twitter handle:
Not applicable
Adds Ollama as an LLM. Ollama can run various open source models locally
e.g. Llama 2 and Vicuna, automatically configuring and GPU-optimizing
them.
@rlancemartin @hwchase17
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
## Description
I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.
## Dependencies
It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.
## Profiles
- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud
---------
Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- fix install command
- change example notebook to use Metaphor autoprompt by default
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: Adds the ChatAnyscale class with llama-2 7b, llama-2 13b,
and llama-2 70b on [Anyscale
Endpoints](https://app.endpoints.anyscale.com/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
- Inspired by https://github.com/langchain-ai/langchain/pull/8434
(@kylehh and @baskaryan )
## Description
This PR adds Nebula to the available LLMs in LangChain.
Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.
Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?
You can read more about Nebula here:
https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/
#### Integration Test
An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.
#### Linting
- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format
### Dependencies
No new dependencies were introduced.
### Twitter handle
[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)
If you have any questions, please let me know.
cc: @hwchase17, @baskaryan
---------
Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
This adds support for [Xata](https://xata.io) (data platform based on
Postgres) as a vector store. We have recently added [Xata to
Langchain.js](https://github.com/hwchase17/langchainjs/pull/2125) and
would love to have the equivalent in the Python project as well.
The PR includes integration tests and a Jupyter notebook as docs. Please
let me know if anything else would be needed or helpful.
I have added the xata python SDK as an optional dependency.
## To run the integration tests
You will need to create a DB in xata (see the docs), then run something
like:
```
OPENAI_API_KEY=sk-... XATA_API_KEY=xau_... XATA_DB_URL='https://....xata.sh/db/langchain' poetry run pytest tests/integration_tests/vectorstores/test_xata.py
```
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Philip Krauss <35487337+philkra@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hello langchain maintainers,
this PR aims at integrating
[vllm](https://vllm.readthedocs.io/en/latest/#) into langchain. This PR
closes#8729.
This feature clearly depends on `vllm`, but I've seen other models
supported here depend on packages that are not included in the
pyproject.toml (e.g. `gpt4all`, `text-generation`) so I thought it was
the case for this as well.
@hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Updated to use newer better function interaction
- Previous version had only one callback
- @hinthornw @hwchase17 Can you look into this
- Shout out to @MultiON_AI @DivGarg9 on twitter
---------
Co-authored-by: Naman Garg <ngarg3@binghamton.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: This PR improves the function of recursive_url_loader, such
as limiting the depth of the access, and customizable extractors(from
the raw webpage to the text of the Document object), so that users can
use other tools to extract the webpage. This PR also includes the
document and test for the new loader.
Old PR closed due to project structure change. #7756
Because socket requests are not allowed, the old unit test was removed.
Issue: N/A
Dependencies: asyncio, aiohttp
Tag maintainer: @rlancemartin
Twitter handle: @ Zend_Nihility
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: docstore had two main method: add and search, however,
dealing with docstore sometimes requires deleting an entry from
docstore. So I have added a simple delete method that deletes items from
docstore. Additionally, I have added the delete method to faiss
vectorstore for the very same reason.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Balancing prioritization between keyword / AI search
- Show snippets of highlighted keywords when searching
- Improved keyword search
- Fixed bugs and issues
Shoutout to @calebpeffer for implementing and gathering feedback on it
cc: @dev2049 @rlancemartin @hwchase17
begining -> beginning
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: 2 links were not working on Question Answering Use Cases
documentation page. Hence, changed them to nearest useful links,
- Issue: NA,
- Dependencies: NA,
- Tag maintainer: @baskaryan,
- Twitter handle: NA
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Refactor for the extraction use case documentation
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Lance Martin <lance@langchain.dev>
* Documentation to favor creation without declaring input_variables
* Cut out obvious examples, but add more description in a few places
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Update API reference documentation. This PR will pick up a number of missing classes, it also applies selective formatting based on the class / object type.
- Description: Added a missing word and rearranged a sentence in the
documentation of Self Query Retrievers.,
- Issue: NA,
- Dependencies: NA,
- Tag maintainer: @baskaryan,
- Twitter handle: NA
Thanks for your time.
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann
- Dependencies: scann
Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py
@rlancemartin, @eyurtsev for review.
Thanks!
# What
- This is to add filter option to sklearn vectore store functions
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Add filter to sklearn vectore store functions.
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Simple retriever that applies an LLM between the user input and the
query pass the to retriever.
It can be used to pre-process the user input in any way.
The default prompt:
```
DEFAULT_QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
template="""You are an assistant tasked with taking a natural languge query from a user
and converting it into a query for a vectorstore. In this process, you strip out
information that is not relevant for the retrieval task. Here is the user query: {question} """
)
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#7854
Added the ability to use the `separator` ase a regex or a simple
character.
Fixed a bug where `start_index` was incorrectly counting from -1.
Who can review?
@eyurtsev
@hwchase17
@mmz-001
- Description: updates to Vectara documentation with more details on how
to get started.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @vectara, @ofermend
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Replace this comment with:
- Description: added a document loader for a list of RSS feeds or OPML.
It iterates through the list and uses NewsURLLoader to load each
article.
- Issue: N/A
- Dependencies: feedparser, listparser
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @ruze
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
Fixes a grammar issue I noticed when reading through the documentation.
### Maintainers
@baskaryan
Co-authored-by: mmillerick <mmillerick@blend.com>
## Description:
1)Map reduce example in docs is missing an important import statement.
Figured other people would benefit from being able to copy 🍝 the code.
2)RefineDocumentsChain example also broken.
## Issue:
None
## Dependencies:
None. One liner.
## Tag maintainer:
@baskaryan
## Twitter handle:
I mean, it's a one line fix lol. But @will_thompson_k is my twitter
handle.
- Description: run the poetry dependencies
- Issue: #7329
- Dependencies: any dependencies required for this change,
- Tag maintainer: @rlancemartin
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.
Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin
---------
Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
Add a StreamlitChatMessageHistory class that stores chat messages in
[Streamlit's Session
State](https://docs.streamlit.io/library/api-reference/session-state).
Note: The integration test uses a currently-experimental Streamlit
testing framework to simulate the execution of a Streamlit app. Marking
this PR as draft until I confirm with the Streamlit team that we're
comfortable supporting it.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Summary
Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.
### Reviewers
- @rlancemartin
- @eyurtsev
- @hwchase17
## Description
This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.
@3coins @agola11
---------
Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
Description:
This PR adds support for loading documents from Huawei OBS (Object
Storage Service) in Langchain. OBS is a cloud-based object storage
service provided by Huawei Cloud. With this enhancement, Langchain users
can now easily access and load documents stored in Huawei OBS directly
into the system.
Key Changes:
- Added a new document loader module specifically for Huawei OBS
integration.
- Implemented the necessary logic to authenticate and connect to Huawei
OBS using access credentials.
- Enabled the loading of individual documents from a specified bucket
and object key in Huawei OBS.
- Provided the option to specify custom authentication information or
obtain security tokens from Huawei Cloud ECS for easy access.
How to Test:
1. Ensure the required package "esdk-obs-python" is installed.
2. Configure the endpoint, access key, secret key, and bucket details
for Huawei OBS in the Langchain settings.
3. Load documents from Huawei OBS using the updated document loader
module.
4. Verify that documents are successfully retrieved and loaded into
Langchain for further processing.
Please review this PR and let us know if any further improvements are
needed. Your feedback is highly appreciated!
@rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Adds an optional buffer arg to the memory's
from_messages() method. If provided the existing memory will be loaded
instead of regenerating a summary from the loaded messages.
Why? If we have past messages to load from, it is likely we also have an
existing summary. This is particularly helpful in cases where the chat
is ephemeral and/or is backed by serverless where the chat history is
not stored but where the updated chat history is passed back and forth
between a backend/frontend.
Eg: Take a stateless qa backend implementation that loads messages on
every request and generates a response — without this addition, each
time the messages are loaded via from_messages, the summaries are
recomputed even though they may have just been computed during the
previous response. With this, the previously computed summary can be
passed in and avoid:
1) spending extra $$$ on tokens, and
2) increased response time by avoiding regenerating previously generated
summary.
Tag maintainer: @hwchase17
Twitter handle: https://twitter.com/ShantanuNair
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: updated BabyAGI examples to append the iteration to the
result id to fix error storing data to vectorstore.
- Issue: 7445
- Dependencies: no
- Tag maintainer: @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didnt want to over complicate the example.
Works just like the GenericLoader but concurrently for those who choose
to optimize their workflow.
@rlancemartin @eyurtsev
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description: Follow up of #8478
- Issue: #8477
- Dependencies: None
- Tag maintainer: @baskaryan
- Twitter handle: [@BharatR123](twitter.com/BharatR123)
The links were still broken after #8478 and sadly the issue was not
caught with either the Vercel app build and `make docs_linkcheck`
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.
@rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:
```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset() # resets the database
collection = client.create_collection("my_collection")
...
```
`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`
This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it
## Issue
This fixes the runtime error that occurs when running the docker
container example code
## Tag Maintainer
@rlancemartin, @eyurtsev
## Description
The imports for `NeptuneOpenCypherQAChain` are failing. This PR adds the
chain class to the `__init__.py` file to fix this issue.
## Maintainers
@dev2049
@krlawrence
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .
fixes#8457
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.
### Issue:
Documentation / Comments Related.
### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.
### Tag maintainer:
@rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
- Issue: the issue # it fixes (if applicable),
- Dependencies: none,
- Tag maintainer: @rlancemartin @eyurtsev,
- Twitter handle: @zackproser (certainly not necessary!)
**Description:**
Add support for Meilisearch vector store.
Resolve#7603
- No external dependencies added
- A notebook has been added
@rlancemartin
https://twitter.com/meilisearch
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
`pip install "xinference[all]"`
- Example Usage:
To start a local instance of Xinference, run `xinference`.
To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:
`xinference-supervisor -H "${supervisor_host}"`
Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.
`xinference-worker -e "http://${supervisor_host}:9997"`
To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.
Now you can use Xinference with LangChain:
```python
from langchain.llms import Xinference
llm = Xinference(
server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
model_uid = {model_uid} # model UID returned from launching a model
)
llm(
prompt="Q: where can we visit in the capital of France? A:",
generate_config={"max_tokens": 1024},
)
```
You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient
client = RESTfulClient("http://0.0.0.0:9997")
model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```
The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings
xinference = XinferenceEmbeddings(
server_url="http://0.0.0.0:9997",
model_uid = model_uid
)
```
```python
query_result = xinference.embed_query("This is a test query")
```
```python
doc_result = xinference.embed_documents(["text A", "text B"])
```
Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!
- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added a new tool to the Github toolkit called **Create Pull Request.**
Now we can make our own langchain contributor in langchain 😁
In order to have somewhere to pull from, I also added a new env var,
"GITHUB_BASE_BRANCH." This will allow the existing env var,
"GITHUB_BRANCH," to be a working branch for the bot (so that it doesn't
have to always commit on the main/master). For example, if you want the
bot to work in a branch called `bot_dev` and your repo base is `main`,
you would set up the vars like:
```
GITHUB_BASE_BRANCH = "main"
GITHUB_BRANCH = "bot_dev"
```
Maintainer responsibilities:
- Agents / Tools / Toolkits: @hinthornw
In this PR:
- Removed restricted model loading logic for Petals-Bloom
- Removed petals imports (DistributedBloomForCausalLM,
BloomTokenizerFast)
- Instead imported more generalized versions of loader
(AutoDistributedModelForCausalLM, AutoTokenizer)
- Updated the Petals example notebook to allow for a successful
installation of Petals in Apple Silicon Macs
- Tag maintainer: @hwchase17, @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Adds AwaEmbeddings class for embeddings, which provides
users with a convenient way to do fine-tuning, as well as the potential
need for multimodality
- Tag maintainer: @baskaryan
Create `Awa.ipynb`: an example notebook for AwaEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/awa.py`: The embedding class
Create `embeddings/test_awa.py`: The test file.
---------
Co-authored-by: taozhiwang <taozhiwa@gmail.com>
Spelling error fix
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
## Description
This commit introduces the `DropboxLoader` class, a new document loader
that allows loading files from Dropbox into the application. The loader
relies on a Dropbox app, which requires creating an app on Dropbox,
obtaining the necessary scope permissions, and generating an access
token. Additionally, the dropbox Python package is required.
The `DropboxLoader` class is designed to be used as a document loader
for processing various file types, including text files, PDFs, and
Dropbox Paper files.
## Dependencies
`pip install dropbox` and `pip install unstructured` for PDF reading.
## Tag maintainer
@rlancemartin, @eyurtsev (from Data Loaders). I'd appreciate some
feedback here 🙏 .
## Social Networks
https://github.com/rubenbarraganhttps://www.linkedin.com/in/rgbarragan/https://twitter.com/RubenBarraganP
---------
Co-authored-by: Ruben Barragan <rbarragan@Rubens-MacBook-Air.local>
# [WIP] Tree of Thought introducing a new ToTChain.
This PR adds a new chain called ToTChain that implements the ["Large
Language Model Guided
Tree-of-Though"](https://arxiv.org/pdf/2305.08291.pdf) paper.
There's a notebook example `docs/modules/chains/examples/tot.ipynb` that
shows how to use it.
Implements #4975
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @vowelparrot
---------
Co-authored-by: Vadim Gubergrits <vgubergrits@outbox.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: Adding support for custom index and scoring profile support
in Azure Cognitive Search
@hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This change compacts the left-side Navbar (ToC) of the [API
Reference](https://api.python.langchain.com/en/latest/api_reference.html).
Now almost each namespace item is split into two lines. For example
`langchain.chat_models: Chat Models`
We remove the `Chat Models` and leave one the `langchain.chat_models`.
This effectively compacts the navbar and increases the main page's
usability. On my screen, it reduces # of lines in Toc from 28 t to 18,
which is huge.
Removing the namespace "title" (like `Chat Models`) does not remove any
information because the title is composed directly from the namespace.
API Reference users are developers. Usability for them is very
important. We see less text => we find faster.
This PR introduces async API support for Cohere, both LLM and
embeddings. It requires updating `cohere` package to `^4`.
Tagging @hwchase17, @baskaryan, @agola11
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: I fixed an issue in the code snippet related to the
variable name and the evaluation of its length. The original code used
the variable "docs," but the correct variable name is "docs_svm" after
using the SVMRetriever.
- maintainer: @baskaryan
- Twitter handle: @iamreechi_
Co-authored-by: iamreechi <richieakparuorji>
Description:
I wanted to use the DuckDuckGoSearch tool in an agent to let him get the
latest news for a topic. DuckDuckGoSearch has already an implemented
function for retrieving news articles. But there wasn't a tool to use
it. I simply adapted the SearchResult class with an extra argument
"backend". You can set it to "news" to only get news articles.
Furthermore, I added an example to the DuckDuckGo Notebook on how to
further customize the results by using the DuckDuckGoSearchAPIWrapper.
Dependencies: no new dependencies
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description
This PR includes the following changes:
- Adds AOSS (Amazon OpenSearch Service Serverless) support to
OpenSearch. Please refer to the documentation on how to use it.
- While creating an index, AOSS only supports Approximate Search with
`nmslib` and `faiss` engines. During Search, only Approximate Search and
Script Scoring (on doc values) are supported.
- This PR also adds support to `efficient_filter` which can be used with
`faiss` and `lucene` engines.
- The `lucene_filter` is deprecated. Instead please use the
`efficient_filter` for the lucene engine.
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
Given a user question, this will -
* Use LLM to generate a set of queries.
* Query for each.
* The URLs from search results are stored in self.urls.
* A check is performed for any new URLs that haven't been processed yet
(not in self.url_database).
* Only these new URLs are loaded, transformed, and added to the
vectorstore.
* The vectorstore is queried for relevant documents based on the
questions generated by the LLM.
* Only unique documents are returned as the final result.
This code will avoid reprocessing of URLs across multiple runs of
similar queries, which should improve the performance of the retriever.
It also keeps track of all URLs that have been processed, which could be
useful for debugging or understanding the retriever's behavior.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Until now, hybrid search was limited to modules requiring external
services, such as Weaviate/Pinecone Hybrid Search. However, I have
developed a hybrid retriever that can merge a list of retrievers using
the [Reciprocal Rank
Fusion](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf)
algorithm. This new approach, similar to Weaviate hybrid search, does
not require the initialization of any external service.
- Dependencies: No - Twitter handle: dayuanjian21687
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Stop sequences are useful if you are doing long-running completions and
need to early-out rather than running for the full max_length... not
only does this save inference cost on Replicate, it is also much faster
if you are going to truncate the output later anyway.
Other LLMs support stop sequences natively (e.g. OpenAI) but I didn't
see this for Replicate so adding this via their prediction cancel
method.
Housekeeping: I ran `make format` and `make lint`, no issues reported in
the files I touched.
I did update the replicate integration test and ran `poetry run pytest
tests/integration_tests/llms/test_replicate.py` successfully.
Finally, I am @tjaffri https://twitter.com/tjaffri for feature
announcement tweets... or if you could please tag @docugami
https://twitter.com/docugami we would really appreciate that :-)
Co-authored-by: Taqi Jaffri <tjaffri@docugami.com>
@rlancemartin
The modification includes:
* etherscanLoader
* test_etherscan
* document ipynb
I have run the test, lint, format, and spell check. I do encounter a
linting error on ipynb, I am not sure how to address that.
```
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:55: error: Name "null" is not defined [name-defined]
docs/extras/modules/data_connection/document_loaders/integrations/Etherscan.ipynb:76: error: Name "null" is not defined [name-defined]
Found 2 errors in 1 file (checked 1 source file)
```
- Description: The Etherscan loader uses etherscan api to load
transaction histories under specific accounts on Ethereum Mainnet.
- No dependency is introduced by this PR.
- Twitter handle: glazecl
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
ChatGLM LLM integration will by default accumulate conversation
history(with_history=True) to ChatGLM backend api, which is not expected
in most cases. This PR set with_history=False by default, user should
explicitly set llm.with_history=True to turn this feature on. Related
PR: #8048#7774
---------
Co-authored-by: mlot <limpo2000@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Simple change of the Class that ContentHandler
inherits from. To create an object of type SagemakerEndpointEmbeddings,
the property content_handler must be of type EmbeddingsContentHandler
not ContentHandlerBase anymore,
- **Twitter handle:** @Juanjo_Torres11
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description:
This PR adds embeddings for LocalAI (
https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in
replacement. As LocalAI can re-use OpenAI clients it is mostly following
the lines of the OpenAI embeddings, however when embedding documents, it
just uses string instead of sending tokens as sending tokens is
best-effort depending on the model being used in LocalAI. Sending tokens
is also tricky as token id's can mismatch with the model - so it's safer
to just send strings in this case.
Partly related to: https://github.com/hwchase17/langchain/issues/5256
Dependencies: No new dependencies
Twitter: @mudler_it
---------
Signed-off-by: mudler <mudler@localai.io>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**PR Description:**
This pull request introduces several enhancements and new features to
the `CubeSemanticLoader`. The changes include the following:
1. Added imports for the `json` and `time` modules.
2. Added new constructor parameters: `load_dimension_values`,
`dimension_values_limit`, `dimension_values_max_retries`, and
`dimension_values_retry_delay`.
3. Updated the class documentation with descriptions for the new
constructor parameters.
4. Added a new private method `_get_dimension_values()` to retrieve
dimension values from Cube's REST API.
5. Modified the `load()` method to load dimension values for string
dimensions if `load_dimension_values` is set to `True`.
6. Updated the API endpoint in the `load()` method from the base URL to
the metadata endpoint.
7. Refactored the code to retrieve metadata from the response JSON.
8. Added the `column_member_type` field to the metadata dictionary to
indicate if a column is a measure or a dimension.
9. Added the `column_values` field to the metadata dictionary to store
the dimension values retrieved from Cube's API.
10. Modified the `page_content` construction to include the column title
and description instead of the table name, column name, data type,
title, and description.
These changes improve the functionality and flexibility of the
`CubeSemanticLoader` class by allowing the loading of dimension values
and providing more detailed metadata for each document.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>