Commit Graph

88 Commits

Author SHA1 Message Date
Erick Friis
eefb49680f
multiple[patch]: fix deprecation versions (#18349) 2024-02-29 16:58:33 -08:00
William De Vena
6b58943917
community[patch]: Invoke callback prior to yielding token (#18288)
## PR title
community[patch]: Invoke callback prior to yielding

PR message
Description: Invoke on_llm_new_token callback prior to yielding token in
_stream and _astream methods.
Issue: https://github.com/langchain-ai/langchain/issues/16913
Dependencies: None
Twitter handle: None
2024-02-28 21:40:53 +00:00
kYLe
17ecf6e119
community[patch]: Remove model limitation on Anyscale LLM (#17662)
**Description:** Llama Guard is deprecated from Anyscale public
endpoint.
**Issue:** Change the default model. and remove the limitation of only
use Llama Guard with Anyscale LLMs
Anyscale LLM can also works with all other Chat model hosted on
Anyscale.
Also added `async_client` for Anyscale LLM
2024-02-25 18:21:19 -08:00
Erick Friis
29e0445490
community[patch]: BaseLLM typing in init (#18029) 2024-02-23 17:51:27 +00:00
Guangdong Liu
4197efd67a
community: Fix SparkLLM error (#18015)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"

- **Description:** fix SparkLLM  error
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
2024-02-23 06:40:29 -08:00
Brad Erickson
ecd72d26cf
community: Bugfix - correct Ollama API path to avoid HTTP 307 (#17895)
Sets the correct /api/generate path, without ending /, to reduce HTTP
requests.

Reference:

https://github.com/ollama/ollama/blob/efe040f8/docs/api.md#generate-request-streaming

Before:

    DEBUG: Starting new HTTP connection (1): localhost:11434
    DEBUG: http://localhost:11434 "POST /api/generate/ HTTP/1.1" 307 0
    DEBUG: http://localhost:11434 "POST /api/generate HTTP/1.1" 200 None

After:

    DEBUG: Starting new HTTP connection (1): localhost:11434
    DEBUG: http://localhost:11434 "POST /api/generate HTTP/1.1" 200 None
2024-02-22 11:59:55 -05:00
Guangdong Liu
47b1b7092d
community[minor]: Add SparkLLM to community (#17702) 2024-02-20 11:23:47 -08:00
Aymeric Roucher
0d294760e7
Community: Fuse HuggingFace Endpoint-related classes into one (#17254)
## Description
Fuse HuggingFace Endpoint-related classes into one:
-
[HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py)
-
[HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py)
- and
[HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py)

Are fused into
- HuggingFaceEndpoint

## Issue
The deduplication of classes was creating a lack of clarity, and
additional effort to develop classes leads to issues like [this
hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)).

## Dependancies

None, this removes dependancies.

## Twitter handle

If you want to post about this: @AymericRoucher

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-19 10:33:15 -08:00
Mohammad Mohtashim
43dc5d3416
community[patch]: OpenLLM Client Fixes + Added Timeout Parameter (#17478)
- OpenLLM was using outdated method to get the final text output from
openllm client invocation which was raising the error. Therefore
corrected that.
- OpenLLM `_identifying_params` was getting the openllm's client
configuration using outdated attributes which was raising error.
- Updated the docstring for OpenLLM.
- Added timeout parameter to be passed to underlying openllm client.
2024-02-19 10:09:11 -08:00
Mateusz Szewczyk
916332ef5b
ibm: added partners package langchain_ibm, added llm (#16512)
- **Description:** Added `langchain_ibm` as an langchain partners
package of IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM
provider (`WatsonxLLM`)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
  - **Tag maintainer:** : 
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-14 12:12:19 -08:00
wulixuan
c776cfc599
community[minor]: integrate with model Yuan2.0 (#15411)
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:46:20 -08:00
Alex Peplowski
70c296ae96
community[patch]: Expose Anthropic Retry Logic (#17069)
**Description:**

Expose Anthropic's retry logic, so that `max_retries` can be configured
via langchain. Anthropic's retry logic is implemented in their Python
SDK here:
https://github.com/anthropics/anthropic-sdk-python?tab=readme-ov-file#retries

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:44:28 -08:00
Kate Silverstein
0bc4a9b3fc
community[minor]: Adds Llamafile as an LLM (#17431)
* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
2024-02-14 11:15:24 -08:00
Nat Noordanus
8a3b74fe1f
community[patch]: Fix pydantic ForwardRef error in BedrockBase (#17416)
- **Description:** Fixes a type annotation issue in the definition of
BedrockBase. This issue was that the annotation for the `config`
attribute includes a ForwardRef to `botocore.client.Config` which is
only imported when `TYPE_CHECKING`. This can cause pydantic to raise an
error like `pydantic.errors.ConfigError: field "config" not yet prepared
so type is still a ForwardRef, ...`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@__nat_n__`
2024-02-13 16:15:55 -08:00
Theo / Taeyoon Kang
1987f905ed
core[patch]: Support .yml extension for YAML (#16783)
- **Description:**

[AS-IS] When dealing with a yaml file, the extension must be .yaml.  

[TO-BE] In the absence of extension length constraints in the OS, the
extension of the YAML file is yaml, but control over the yml extension
must still be made.

It's as if it's an error because it's a .jpg extension in jpeg support.

  - **Issue:** - 

  - **Dependencies:**
no dependencies required for this change,
2024-02-12 19:57:20 -08:00
Robby
0653aa469a
community[patch]: Invoke callback prior to yielding token (#17346)
**Description:** Invoke callback prior to yielding token in stream
method for watsonx.
**Issue:** [Callback for on_llm_new_token should be invoked before the
token is yielded by the model
#16913](https://github.com/langchain-ai/langchain/issues/16913)

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-02-12 16:36:33 -08:00
Erick Friis
3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
kYLe
c9999557bf
community[patch]: Modify LLMs/Anyscale work with OpenAI API v1 (#14206)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
- **Description:** 
1. Modify LLMs/Anyscale to work with OAI v1
2. Get rid of openai_ prefixed variables in Chat_model/ChatAnyscale
3. Modify `anyscale_api_base` to `anyscale_base_url` to follow OAI name
convention (reverted)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:11:18 -08:00
Leonid Ganeline
932c52c333
community[patch]: docstrings (#16810)
- added missed docstrings
- formated docstrings to the consistent form
2024-02-09 12:48:57 -08:00
Armin Stepanyan
641efcf41c
community: add runtime kwargs to HuggingFacePipeline (#17005)
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.

Usage example:

```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)

hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:58:31 -08:00
Liang Zhang
7306600e2f
community[patch]: Support SerDe transform functions in Databricks LLM (#16752)
**Description:** Databricks LLM does not support SerDe the
transform_input_fn and transform_output_fn. After saving and loading,
the LLM will be broken. This PR serialize these functions into a hex
string using pickle, and saving the hex string in the yaml file. Using
pickle to serialize a function can be flaky, but this is a simple
workaround that unblocks many use cases. If more sophisticated SerDe is
needed, we can improve it later.

Test:
Added a simple unit test.
I did manual test on Databricks and it works well.
The saved yaml looks like:
```
llm:
      _type: databricks
      cluster_driver_port: null
      cluster_id: null
      databricks_uri: databricks
      endpoint_name: databricks-mixtral-8x7b-instruct
      extra_params: {}
      host: e2-dogfood.staging.cloud.databricks.com
      max_tokens: null
      model_kwargs: null
      n: 1
      stop: null
      task: null
      temperature: 0.0
      transform_input_fn: 80049520000000000000008c085f5f6d61696e5f5f948c0f7472616e73666f726d5f696e7075749493942e
      transform_output_fn: null
```

@baskaryan

```python
from langchain_community.embeddings import DatabricksEmbeddings
from langchain_community.llms import Databricks
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import mlflow

embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")

def transform_input(**request):
  request["messages"] = [
    {
      "role": "user",
      "content": request["prompt"]
    }
  ]
  del request["prompt"]
  return request

llm = Databricks(endpoint_name="databricks-mixtral-8x7b-instruct", transform_input_fn=transform_input)

persist_dir = "faiss_databricks_embedding"

# Create the vector db, persist the db to a local fs folder
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
db.save_local(persist_dir)

def load_retriever(persist_directory):
    embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
    vectorstore = FAISS.load_local(persist_directory, embeddings)
    return vectorstore.as_retriever()

retriever = load_retriever(persist_dir)
retrievalQA = RetrievalQA.from_llm(llm=llm, retriever=retriever)
with mlflow.start_run() as run:
    logged_model = mlflow.langchain.log_model(
        retrievalQA,
        artifact_path="retrieval_qa",
        loader_fn=load_retriever,
        persist_dir=persist_dir,
    )

# Load the retrievalQA chain
loaded_model = mlflow.pyfunc.load_model(logged_model.model_uri)
print(loaded_model.predict([{"query": "What did the president say about Ketanji Brown Jackson"}]))

```
2024-02-08 13:09:50 -08:00
François Paupier
929f071513
community[patch]: Fix error in LlamaCpp community LLM with Configurable Fields, 'grammar' custom type not available (#16995)
- **Description:** Ensure the `LlamaGrammar` custom type is always
available when instantiating a `LlamaCpp` LLM
  - **Issue:** #16994 
  - **Dependencies:** None
  - **Twitter handle:** @fpaupier

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-05 17:56:58 -08:00
Mohammad Mohtashim
3c4b24b69a
community[patch]: Fix the _call of HuggingFaceHub (#16891)
Fixed the following identified issue: #16849

@baskaryan
2024-02-05 15:34:42 -08:00
Supreet Takkar
ae33979813
community[patch]: Allow adding ARNs as model_id to support Amazon Bedrock custom models (#16800)
- **Description:** Adds an additional class variable to `BedrockBase`
called `provider` that allows sending a model provider such as amazon,
cohere, ai21, etc.
Up until now, the model provider is extracted from the `model_id` using
the first part before the `.`, such as `amazon` for
`amazon.titan-text-express-v1` (see [supported list of Bedrock model IDs
here](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids-arns.html)).
But for custom Bedrock models where the ARN of the provisioned
throughput must be supplied, the `model_id` is like
`arn:aws:bedrock:...` so the `model_id` cannot be extracted from this. A
model `provider` is required by the LangChain Bedrock class to perform
model-based processing. To allow the same processing to be performed for
custom-models of a specific base model type, passing this `provider`
argument can help solve the issues.
The alternative considered here was the use of
`provider.arn:aws:bedrock:...` which then requires ARN to be extracted
and passed separately when invoking the model. The proposed solution
here is simpler and also does not cause issues for current models
already using the Bedrock class.
  - **Issue:** N/A
  - **Dependencies:** N/A

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-02-05 14:28:03 -08:00
Bagatur
66e45e8ab7
community[patch]: chat model mypy fixes (#17061)
Related to #17048
2024-02-05 13:42:59 -08:00
Harrison Chase
4eda647fdd
infra: add -p to mkdir in lint steps (#17013)
Previously, if this did not find a mypy cache then it wouldnt run

this makes it always run

adding mypy ignore comments with existing uncaught issues to unblock other prs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-05 11:22:06 -08:00
Bob Lin
546b757303
community: Add ChatGLM3 (#15265)
Add [ChatGLM3](https://github.com/THUDM/ChatGLM3) and updated
[chatglm.ipynb](https://python.langchain.com/docs/integrations/llms/chatglm)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-29 20:30:52 -08:00
baichuan-assistant
f8f2649f12
community: Add Baichuan LLM to community (#16724)
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-29 20:08:24 -08:00
hulitaitai
32cad38ec6
<langchain_community\llms\chatglm.py>: <Correcting "history"> (#16729)
Use the real "history" provided by the original program instead of
putting "None" in the history.

- **Description:** I change one line in the code to make it return the
"history" of the chat model.
- **Issue:** At the moment it returns only the answers of the chat
model. However the chat model himself provides a history more complet
with the questions of the user.
  - **Dependencies:** no dependencies required for this change,
2024-01-29 19:50:31 -08:00
Bassem Yacoube
85e93e05ed
community[minor]: Update OctoAI LLM, Embedding and documentation (#16710)
This PR includes updates for OctoAI integrations:
- The LLM class was updated to fix a bug that occurs with multiple
sequential calls
- The Embedding class was updated to support the new GTE-Large endpoint
released on OctoAI lately
- The documentation jupyter notebook was updated to reflect using the
new LLM sdk
Thank you!
2024-01-29 13:57:17 -08:00
Zhuoyun(John) Xu
508bde7f40
community[patch]: Ollama - Pass headers to post request in async method (#16660)
# Description
A previous PR (https://github.com/langchain-ai/langchain/pull/15881)
added option to pass headers to ollama endpoint, but headers are not
pass to the async method.
2024-01-27 16:11:32 -08:00
Micah Parker
6543e585a5
community[patch]: Added support for Ollama's num_predict option in ChatOllama (#16633)
Just a simple default addition to the options payload for a ollama
generate call to support a max_new_tokens parameter.

Should fix issue: https://github.com/langchain-ai/langchain/issues/14715
2024-01-26 15:00:19 -08:00
Bagatur
61e876aad8
openai[patch]: Explicitly support embedding dimensions (#16596) 2024-01-25 15:16:04 -08:00
Dmitry Tyumentsev
e86e66bad7
community[patch]: YandexGPT models - add sleep_interval (#16566)
Added sleep between requests to prevent errors associated with
simultaneous requests.
2024-01-25 09:07:19 -08:00
Rave Harpaz
c4e9c9ca29
community[minor]: Add OCI Generative AI integration (#16548)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
  - **Issue:** None,
  - **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
 
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 18:23:50 -08:00
Harel Gal
a91181fe6d
community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.

@baskaryan  @hwchase17

```python 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  guardrails={"id": " <guardrail_id>",
                              "version": "<guardrail_version>",
                               "trace": True}, callbacks=[BedrockAsyncCallbackHandler()])

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    """Async callback handler that can be used to handle callbacks from langchain."""

    async def on_llm_error(
            self,
            error: BaseException,
            **kwargs: Any,
    ) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
           # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
            print(f"""Guardrails: {kwargs}""")


# streaming 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  streaming=True,
                  guardrails={"id": "<guardrail_id>",
                              "version": "<guardrail_version>"})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:44:19 -08:00
chyroc
61da2ff24c
community[patch]: use SecretStr for yandex model secrets (#15463) 2024-01-23 20:08:53 -08:00
Alessio Serra
d628a80a5d
community[patch]: added 'conversational' as a valid task for hugginface endopoint models (#15761)
- **Description:** added the conversational task to hugginFace endpoint
in order to use models designed for chatbot programming.
  - **Dependencies:** None

---------

Co-authored-by: Alessio Serra (ext.) <alessio.serra@partner.bmw.de>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-23 20:04:15 -08:00
Shivani Modi
4e160540ff
community[minor]: Adding Konko Completion endpoint (#15570)
This PR introduces update to Konko Integration with LangChain.

1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.

2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.

4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.

Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.

---------

Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
2024-01-23 18:22:32 -08:00
Facundo Santiago
92e6a641fd
feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)
- **Description:** Introducing support for LLMs and Chat models running
in Azure AI studio and Azure ML using the new deployment mode
pay-as-you-go (model as a service).
- **Issue:** NA
- **Dependencies:** None.
- **Tag maintainer:** @prakharg-msft @gdyre 
- **Twitter handle:** @santiagofacundo

Examples added:
*
[docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb)
*
[docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 17:08:51 -08:00
Massimiliano Pronesti
e529939c54
feat(llms): support more tasks in HuggingFaceHub LLM and remove deprecated dep (#14406)
- **Description:** this PR upgrades the `HuggingFaceHub` LLM:
   * support more tasks (`translation` and `conversational`)
   * replaced the deprecated `InferenceApi` with `InferenceClient`
* adjusted the overall logic to use the "recommended" model for each
task when no model is provided, and vice-versa.
- **Tag mainter(s)**: @baskaryan @hwchase17
2024-01-23 16:48:56 -08:00
DL
b9e7f6f38a
community[minor]: Bedrock async methods (#12477)
Description: Added support for asynchronous streaming in the Bedrock
class and corresponding tests.

Primarily:
  async def aprepare_output_stream
    async def _aprepare_input_and_invoke_stream
    async def _astream
    async def _acall

I've ensured that the code adheres to the project's linting and
formatting standards by running make format, make lint, and make test.

Issue: #12054, #11589

Dependencies: None

Tag maintainer: @baskaryan 

Twitter handle: @dominic_lovric

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-01-22 14:44:49 -08:00
Guillem Orellana Trullols
aad2aa7188
community[patch]: BedrockChat -> Support Titan express as chat model (#15408)
Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.

Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
2024-01-22 11:37:23 -08:00
Tom Jorquera
1445ac95e8
community[patch]: Enable streaming for GPT4all (#16392)
`streaming` param was never passed to model
2024-01-22 09:54:18 -08:00
mikeFore4
9d32af72ce
community[patch]: huggingface hub character removal bug fix (#16233)
- **Description:** Some text-generation models on huggingface repeat the
prompt in their generated response, but not all do! The tests use "gpt2"
which DOES repeat the prompt and as such, the HuggingFaceHub class is
hardcoded to remove the first few characters of the response (to match
the len(prompt)). However, if you are using a model (such as the very
popular "meta-llama/Llama-2-7b-chat-hf") that DOES NOT repeat the prompt
in it's generated text, then the beginning of the generated text will be
cut off. This code change fixes that bug by first checking whether the
prompt is repeated in the generated response and removing it
conditionally.
  - **Issue:** #16232 
  - **Dependencies:** N/A
  - **Twitter handle:** N/A
2024-01-18 18:44:10 -08:00
Fei Wang
d0e101e4e0
community[patch]: fix ollama astream (#16070)
Update ollama.py
2024-01-17 09:42:41 -08:00
chyroc
d334efc848
community[patch]: fix top_p type hint (#15452)
fix: https://github.com/langchain-ai/langchain/issues/15341

@efriis
2024-01-15 11:59:39 -08:00
Mateusz Szewczyk
251afda549
community[patch]: fix stop (stop_sequences) param on WatsonxLLM (#15541)
- **Description:** Fix to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider (stop
(`stop_sequences`) param on watsonxLLM)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
2024-01-15 11:44:57 -08:00
shahrin014
86321a949f
community: Ollama - Parameter structure to follow official documentation (#16035)
## Feature
- Follow parameter structure as per official documentation 
- top level parameters (e.g. model, system, template) will be passed as
top level parameters
  - other parameters will be sent in options unless options is provided

![image](https://github.com/langchain-ai/langchain/assets/17451563/d14715d9-9701-4ee3-b44b-89fffea62389)

## Tests
- Test if top level parameters handled properly
- Test if parameters that are not top level parameters are handled as
options
- Test if options is provided, it will be passed as is
2024-01-15 10:17:58 -08:00
shahrin014
bdd90ae2ee
community: Ollama - Pass headers to post request (#15881)
## Feature
- Set additional headers in constructor
- Headers will be sent in post request

This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.

## Tests
- Test if header is passed
- Test if header is not passed
2024-01-11 21:40:35 -08:00