Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- **Description:**
Support ChatMlflow.bind_tools method
Tested in Databricks:
<img width="836" alt="image"
src="https://github.com/user-attachments/assets/fa28ef50-0110-4698-8eda-4faf6f0b9ef8">
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** This PR fixes a KeyError in NotionDBLoader when the
"name" key is missing in the "people" property.
**Issue:** Fixes#24223
**Dependencies:** None
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
This PR adds annotations in comunity package.
Annotations are only strictly needed in subclasses of BaseModel for
pydantic 2 compatibility.
This PR adds some unnecessary annotations, but they're not bad to have
regardless for documentation pages.
Title: [pebblo_retrieval] Identifying entities in prompts given in
PebbloRetrievalQA leading to prompt governance
Description: Implemented identification of entities in the prompt using
Pebblo prompt governance API.
Issue: NA
Dependencies: NA
Add tests and docs: NA
- **Title:** [PebbloSafeLoader] Implement content-size-based batching in
the classification flow(loader/doc API)
- **Description:**
- Implemented content-size-based batching in the loader/doc API, set to
100KB with no external configuration option, intentionally hard-coded to
prevent timeouts.
- Remove unused field(pb_id) from doc_metadata
- **Issue:** NA
- **Dependencies:** NA
- **Add tests and docs:** Updated
Description: The old method will be discontinued; use the official SDK
for more model options.
Issue: None
Dependencies: None
Twitter handle: None
Co-authored-by: trumanyan <trumanyan@tencent.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
## Description
This PR:
- Fixes the validation error in `FastEmbedEmbeddings`.
- Adds support for `batch_size`, `parallel` params.
- Removes support for very old FastEmbed versions.
- Updates the FastEmbed doc with the new params.
Associated Issues:
- Resolves#24039
- Resolves #https://github.com/qdrant/fastembed/issues/296
**Description:**
This update significantly improves the Brave Search Tool's utility
within the LangChain library by enriching the search results it returns.
The tool previously returned title, link, and snippet, with the snippet
being a truncated 140-character description from the search engine. To
make the search results more informative, this update enables
extra_snippets by default and introduces additional result fields:
title, link, description (enhancing and renaming the former snippet
field), age, and snippets. The snippets field provides a list of strings
summarizing the webpage, utilizing Brave's capability for more detailed
search insights. This enhancement aims to make the search tool far more
informative and beneficial for users.
**Issue:** N/A
**Dependencies:** No additional dependencies introduced.
**Twitter handle:** @davidalexr987
**Code Changes Summary:**
- Changed the default setting to include extra_snippets in search
results.
- Renamed the snippet field to description to accurately reflect its
content and included an age field for search results.
- Introduced a snippets field that lists webpage summaries, providing
users with comprehensive search result insights.
**Backward Compatibility Note:**
The renaming of snippet to description improves the accuracy of the
returned data field but may impact existing users who have developed
integration's or analyses based on the snippet field. I believe this
change is essential for clarity and utility, and it aligns better with
the data provided by Brave Search.
**Additional Notes:**
This proposal focuses exclusively on the Brave Search package, without
affecting other LangChain packages or introducing new dependencies.
**Description**
Fixes DocumentDBVectorSearch similarity_search when no filter is used;
it defaults to None but $match does not accept None, so changed default
to empty {} before pipeline is created.
**Issue**
AWS DocumentDB similarity search does not work when no filter is used.
Error msg: "the match filter must be an expression in an object" #24775
**Dependencies**
No dependencies
**Twitter handle**
https://x.com/perepasamonte
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
community:Add support for specifying document_loaders.firecrawl api url.
Add support for specifying document_loaders.firecrawl api url.
This is mainly to support the
[self-hosting](https://github.com/mendableai/firecrawl/blob/main/SELF_HOST.md)
option firecrawl provides. Eg. now I can specify localhost:....
The corresponding firecrawl class already provides functionality to pass
the argument. See here:
4c9d62f6d3/apps/python-sdk/firecrawl/firecrawl.py (L29)
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community:add Yi LLM", "docs:add Yi Documentation"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** This PR adds support for the Yi model to LangChain.
- **Dependencies:**
[langchain_core,requests,contextlib,typing,logging,json,langchain_community]
- **Twitter handle:** 01.AI
- [x] **Add tests and docs**: I've added the corresponding documentation
to the relevant paths
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Raise `LangChainException` instead of `Exception`. This alleviates the
need for library users to use bare try/except to handle exceptions
raised by `AzureSearch`.
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Description:
add a optional score relevance threshold for select only coherent
document, it's in complement of top_n
Discussion:
add relevance score threshold in flashrank_rerank document compressors
#24013
Dependencies:
no dependencies
---------
Co-authored-by: Benjamin BERNARD <benjamin.bernard@openpathview.fr>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Description:
- This PR adds a self query retriever implementation for SAP HANA Cloud
Vector Engine. The retriever supports all operators except for contains.
- Issue: N/A
- Dependencies: no new dependencies added
**Add tests and docs:**
Added integration tests to:
libs/community/tests/unit_tests/query_constructors/test_hanavector.py
**Documentation for self query retriever:**
/docs/integrations/retrievers/self_query/hanavector_self_query.ipynb
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Expanded the chat model functionality to support tools
in the 'baichuan.py' file. Updated module imports and added tool object
handling in message conversions. Additional changes include the
implementation of tool binding and related unit tests. The alterations
offer enhanced model capabilities by enabling interaction with tool-like
objects.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- [x] **PR title**:
community: Add OCI Generative AI tool and structured output support
- [x] **PR message**:
- **Description:** adding tool calling and structured output support for
chat models offered by OCI Generative AI services. This is an update to
our last PR 22880 with changes in
/langchain_community/chat_models/oci_generative_ai.py
- **Issue:** NA
- **Dependencies:** NA
- **Twitter handle:** NA
- [x] **Add tests and docs**:
1. we have updated our unit tests
2. we have updated our documentation under
/docs/docs/integrations/chat/oci_generative_ai.ipynb
- [x] **Lint and test**: `make format`, `make lint` and `make test` we
run successfully
---------
Co-authored-by: RHARPAZ <RHARPAZ@RHARPAZ-5750.us.oracle.com>
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
**Description:**
- This PR exposes some functions in VDMS vectorstore, updates VDMS
related notebooks, updates tests, and upgrade version of VDMS (>=0.0.20)
**Issue:** N/A
**Dependencies:**
- Update vdms>=0.0.20
Fixes for Eden AI Custom tools and ChatEdenAI:
- add missing import in __init__ of chat_models
- add `args_schema` to custom tools. otherwise '__arg1' would sometimes
be passed to the `run` method
- fix IndexError when no human msg is added in ChatEdenAI
Thank you for contributing to LangChain!
**Description:**
This PR allows users of `langchain_community.llms.ollama.Ollama` to
specify the `auth` parameter, which is then forwarded to all internal
calls of `requests.request`. This works in the same way as the existing
`headers` parameters. The auth parameter enables the usage of the given
class with Ollama instances, which are secured by more complex
authentication mechanisms, that do not only rely on static headers. An
example are AWS API Gateways secured by the IAM authorizer, which
expects signatures dynamically calculated on the specific HTTP request.
**Issue:**
Integrating a remote LLM running through Ollama using
`langchain_community.llms.ollama.Ollama` only allows setting static HTTP
headers with the parameter `headers`. This does not work, if the given
instance of Ollama is secured with an authentication mechanism that
makes use of dynamically created HTTP headers which for example may
depend on the content of a given request.
**Dependencies:**
None
**Twitter handle:**
None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Added [ScrapingAnt](https://scrapingant.com/) Web Loader integration.
ScrapingAnt is a web scraping API that allows extracting web page data
into accessible and well-formatted markdown.
Description: Added ScrapingAnt web loader for retrieving web page data
as markdown
Dependencies: scrapingant-client
Twitter: @WeRunTheWorld3
---------
Co-authored-by: Oleg Kulyk <oleg@scrapingant.com>
#### Update (2):
A single `UnstructuredLoader` is added to handle both local and api
partitioning. This loader also handles single or multiple documents.
#### Changes in `community`:
Changes here do not affect users. In the initial process of using the
SDK for the API Loaders, the Loaders in community were refactored.
Other changes include:
The `UnstructuredBaseLoader` has a new check to see if both
`mode="paged"` and `chunking_strategy="by_page"`. It also now has
`Element.element_id` added to the `Document.metadata`.
`UnstructuredAPIFileLoader` and `UnstructuredAPIFileIOLoader`. As such,
now both directly inherit from `UnstructuredBaseLoader` and initialize
their `file_path`/`file` attributes respectively and implement their own
`_post_process_elements` methods.
--------
#### Update:
New SDK Loaders in a [partner
package](https://python.langchain.com/v0.1/docs/contributing/integrations/#partner-package-in-langchain-repo)
are introduced to prevent breaking changes for users (see discussion
below).
##### TODO:
- [x] Test docstring examples
--------
- **Description:** UnstructuredAPIFileIOLoader and
UnstructuredAPIFileLoader calls to the unstructured api are now made
using the unstructured-client sdk.
- **New Dependencies:** unstructured-client
- [x] **Add tests and docs**: If you're adding a new integration, please
include
- [x] a test for the integration, preferably unit tests that do not rely
on network access,
- [x] update the description in
`docs/docs/integrations/providers/unstructured.mdx`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
TODO:
- [x] Update
https://python.langchain.com/v0.1/docs/integrations/document_loaders/unstructured_file/#unstructured-api
-
`langchain/docs/docs/integrations/document_loaders/unstructured_file.ipynb`
- The description here needs to indicate that users should install
`unstructured-client` instead of `unstructured`. Read over closely to
look for any other changes that need to be made.
- [x] Update the `lazy_load` method in `UnstructuredBaseLoader` to
handle json responses from the API instead of just lists of elements.
- This method may need to be overwritten by the API loaders instead of
changing it in the `UnstructuredBaseLoader`.
- [x] Update the documentation links in the class docstrings (the
Unstructured documents have moved)
- [x] Update Document.metadata to include `element_id` (see thread
[here](https://unstructuredw-kbe4326.slack.com/archives/C044N0YV08G/p1718187499818419))
---------
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ChengZi <chen.zhang@zilliz.com>
This linter is meant to move development to use __init__ instead of
root_validator and validator.
We need to investigate whether we need to lint some of the functionality
of Field (e.g., `lt` and `gt`, `alias`)
`alias` is the one that's most popular:
(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "alias=" | wc -l
144
(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "ge=" | wc -l
10
(community) ➜ community git:(eugene/add_linter_to_community) ✗ git grep
" Field(" | grep "gt=" | wc -l
4
This PR is under WIP and adds the following functionalities:
- [X] Supports tool calling across the langchain ecosystem. (However
streaming is not supported)
- [X] Update documentation
- [ ] **Community**: "Retrievers: Product Quantization"
- [X] This PR adds Product Quantization feature to the retrievers to the
Langchain Community. PQ is one of the fastest retrieval methods if the
embeddings are rich enough in context due to the concepts of
quantization and representation through centroids
- **Description:** Adding PQ as one of the retrievers
- **Dependencies:** using the package nanopq for this PR
- **Twitter handle:** vishnunkumar_
- [X] **Add tests and docs**: If you're adding a new integration, please
include
- [X] Added unit tests for the same in the retrievers.
- [] Will add an example notebook subsequently
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/ -
done the same
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- This PR adds vector search filtering for Azure Cosmos DB Mongo vCore
and NoSQL.
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
In some lines its trying to read a key that do not exists yet. In this
cases I changed the direct access to dict.get() method
- [ x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
### Description
This pull request added new document loaders to load documents of
various formats using [Dedoc](https://github.com/ispras/dedoc):
- `DedocFileLoader` (determine file types automatically and parse)
- `DedocPDFLoader` (for `PDF` and images parsing)
- `DedocAPIFileLoader` (determine file types automatically and parse
using Dedoc API without library installation)
[Dedoc](https://dedoc.readthedocs.io) is an open-source library/service
that extracts texts, tables, attached files and document structure
(e.g., titles, list items, etc.) from files of various formats. The
library is actively developed and maintained by a group of developers.
`Dedoc` supports `DOCX`, `XLSX`, `PPTX`, `EML`, `HTML`, `PDF`, images
and more.
Full list of supported formats can be found
[here](https://dedoc.readthedocs.io/en/latest/#id1).
For `PDF` documents, `Dedoc` allows to determine textual layer
correctness and split the document into paragraphs.
### Issue
This pull request extends variety of document loaders supported by
`langchain_community` allowing users to choose the most suitable option
for raw documents parsing.
### Dependencies
The PR added a new (optional) dependency `dedoc>=2.2.5` ([library
documentation](https://dedoc.readthedocs.io)) to the
`extended_testing_deps.txt`
### Twitter handle
None
### Add tests and docs
1. Test for the integration:
`libs/community/tests/integration_tests/document_loaders/test_dedoc.py`
2. Example notebook:
`docs/docs/integrations/document_loaders/dedoc.ipynb`
3. Information about the library:
`docs/docs/integrations/providers/dedoc.mdx`
### Lint and test
Done locally:
- `make format`
- `make lint`
- `make integration_tests`
- `make docs_build` (from the project root)
---------
Co-authored-by: Nasty <bogatenkova.anastasiya@mail.ru>
- **Description:** Add a DocumentTransformer for executing one or more
`LinkExtractor`s and adding the extracted links to each document.
- **Issue:** n/a
- **Depedencies:** none
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
- **Description:**
- Fix#12870: set scope in `default` func (ref:
https://google-auth.readthedocs.io/en/master/reference/google.auth.html)
- Moved the code to load default credentials to the bottom for clarity
of the logic
- Add docstring and comment for each credential loading logic
- **Issue:** https://github.com/langchain-ai/langchain/issues/12870
- **Dependencies:** no dependencies change
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** @gymnstcs
<!-- If no one reviews your PR within a few days, please @-mention one
of @baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description:** `QianfanChatEndpoint` When using tool result to
answer questions, the content of the tool is required to be in Dict
format. Of course, this can require users to return Dict format when
calling the tool, but in order to be consistent with other Chat Models,
I think such modifications are necessary.
- **Description:** The correct Prompts for ZERO_SHOT_REACT were not
being used in the `create_sql_agent` function. They were not using the
specific `SQL_PREFIX` and `SQL_SUFFIX` prompts if client does not
provide any prompts. This is fixed.
- **Issue:** #23585
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Regardless of whether `embedding_func` is set or not, the 'text'
attribute of document should be assigned, otherwise the `page_content`
in the document of the final search result will be lost
- **Description:** Add a flag to determine whether to show progress bar
- **Issue:** n/a
- **Dependencies:** n/a
- **Twitter handle:** n/a
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
xfailing some sql tests that do not currently work on sqlalchemy v1
#22207 was very much not sqlalchemy v1 compatible.
Moving forward, implementations should be compatible with both to pass
CI
- **Description:** Search has a limit of 500 results, playlistItems
doesn't. Added a class in except clause to catch another common error.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** @TupleType
---------
Co-authored-by: asi-cider <88270351+asi-cider@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** This PR introduces a change to the
`cypher_generation_chain` to dynamically concatenate inputs. This
improvement aims to streamline the input handling process and make the
method more flexible. The change involves updating the arguments
dictionary with all elements from the `inputs` dictionary, ensuring that
all necessary inputs are dynamically appended. This will ensure that any
cypher generation template will not require a new `_call` method patch.
**Issue:** This PR fixes issue #24260.
The `MongoDBStore` can manage only documents.
It's not possible to use MongoDB for an `CacheBackedEmbeddings`.
With this new implementation, it's possible to use:
```python
CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings=embeddings,
document_embedding_cache=MongoDBByteStore(
connection_string=db_uri,
db_name=db_name,
collection_name=collection_name,
),
)
```
and use MongoDB to cache the embeddings !
- **Description:**
- Updated checksum in doc metadata
- Sending checksum and removing actual content, while sending data to
`pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`/loader/doc` API
- Adding `pb_id` i.e. pebblo id to doc metadata
- Refactoring as needed.
- Sending `content-checksum` and removing actual content, while sending
data to `pebblo-cloud` if `classifier-location `is `pebblo-cloud` in
`prmopt` API
- **Issue:** NA
- **Dependencies:** NA
- **Tests:** Updated
- **Docs** NA
---------
Co-authored-by: dristy.cd <dristy@clouddefense.io>
**Description:**
**TextEmbed** is a high-performance embedding inference server designed
to provide a high-throughput, low-latency solution for serving
embeddings. It supports various sentence-transformer models and includes
the ability to deploy image and text embedding models. TextEmbed offers
flexibility and scalability for diverse applications.
- **PyPI Package:** [TextEmbed on
PyPI](https://pypi.org/project/textembed/)
- **Docker Image:** [TextEmbed on Docker
Hub](https://hub.docker.com/r/kevaldekivadiya/textembed)
- **GitHub Repository:** [TextEmbed on
GitHub](https://github.com/kevaldekivadiya2415/textembed)
**PR Description**
This PR adds functionality for embedding documents and queries using the
`TextEmbedEmbeddings` class. The implementation allows for both
synchronous and asynchronous embedding requests to a TextEmbed API
endpoint. The class handles batching and permuting of input texts to
optimize the embedding process.
**Example Usage:**
```python
from langchain_community.embeddings import TextEmbedEmbeddings
# Initialise the embeddings class
embeddings = TextEmbedEmbeddings(model="your-model-id", api_key="your-api-key", api_url="your_api_url")
# Define a list of documents
documents = [
"Data science involves extracting insights from data.",
"Artificial intelligence is transforming various industries.",
"Cloud computing provides scalable computing resources over the internet.",
"Big data analytics helps in understanding large datasets.",
"India has a diverse cultural heritage."
]
# Define a query
query = "What is the cultural heritage of India?"
# Embed all documents
document_embeddings = embeddings.embed_documents(documents)
# Embed the query
query_embedding = embeddings.embed_query(query)
# Print embeddings for each document
for i, embedding in enumerate(document_embeddings):
print(f"Document {i+1} Embedding:", embedding)
# Print the query embedding
print("Query Embedding:", query_embedding)
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
- **Description:** Add Riza Python/JS code execution tool
- **Issue:** N/A
- **Dependencies:** an optional dependency on the `rizaio` pypi package
- **Twitter handle:** [@rizaio](https://x.com/rizaio)
[Riza](https://riza.io) is a safe code execution environment for
agent-generated Python and JavaScript that's easy to integrate into
langchain apps. This PR adds two new tool classes to the community
package.
- **Description:** Add a `KeybertLinkExtractor` for graph vectorstores.
This allows extracting links from keywords in a Document and linking
nodes that have common keywords.
- **Issue:** None
- **Dependencies:** None.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** This allows extracting links between documents with
common named entities using [GLiNER](https://github.com/urchade/GLiNER).
- **Issue:** None
- **Dependencies:** None
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:**
- Added masking of the API Keys for the modules:
- `langchain/chat_models/openai.py`
- `langchain/llms/openai.py`
- `langchain/llms/google_palm.py`
- `langchain/chat_models/google_palm.py`
- `langchain/llms/edenai.py`
- Updated the modules to utilize `SecretStr` from pydantic to securely
manage API key.
- Added unit/integration tests
- `langchain/chat_models/asure_openai.py` used the `open_api_key` that
is derived from the `ChatOpenAI` Class and it was assuming
`openai_api_key` is a str so we changed it to expect `SecretStr`
instead.
**Issue:** https://github.com/langchain-ai/langchain/issues/12165 ,
**Dependencies:** none,
**Tag maintainer:** @eyurtsev
---------
Co-authored-by: HassanA01 <anikeboss@gmail.com>
Co-authored-by: Aneeq Hassan <aneeq.hassan@utoronto.ca>
Co-authored-by: kristinspenc <kristinspenc2003@gmail.com>
Co-authored-by: faisalt14 <faisalt14@gmail.com>
Co-authored-by: Harshil-Patel28 <76663814+Harshil-Patel28@users.noreply.github.com>
Co-authored-by: kristinspenc <146893228+kristinspenc@users.noreply.github.com>
Co-authored-by: faisalt14 <90787271+faisalt14@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- **Description**: Mask API key for ChatOpenAi based chat_models
(openai, azureopenai, anyscale, everlyai).
Made changes to all chat_models that are based on ChatOpenAI since all
of them assumes that openai_api_key is str rather than SecretStr.
- **Issue:**: #12165
- **Dependencies:** N/A
- **Tag maintainer:** @eyurtsev
- **Twitter handle:** N/A
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**Description:**
- Updated the format for the 'Action' section in the planner prompt to
ensure it must be one of the tools without additional words. Adjusted
the phrasing from "should be" to "must be" for clarity and
enforceability.
- Corrected the tool appending logic in the
`_create_api_controller_agent` function to ensure that
`RequestsDeleteToolWithParsing` and `RequestsPatchToolWithParsing` are
properly added to the tools list for "DELETE" and "PATCH" operations.
**Issue:** #24382
**Dependencies:** None
**Twitter handle:** @lunara_x
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: [PebbloSafeLoader] Rename loader type and add
SharePointLoader to supported loaders
- **Description:** Minor fixes in the PebbloSafeLoader:
- Renamed the loader type from `remote_db` to `cloud_folder`.
- Added `SharePointLoader` to the list of loaders supported by
PebbloSafeLoader.
- **Issue:** NA
- **Dependencies:** NA
- [x] **Add tests and docs**: NA
### Description
Missing "stream" parameter. Without it, you'd never receive a stream of
tokens when using stream() or astream()
### Issue
No existing issue available
**Description:**
- Updated constructors in PyPDFParser and PyPDFLoader to handle
`extraction_mode` and additional kwargs, aligning with the capabilities
of `PageObject.extract_text()` from pypdf.
- Added `test_pypdf_loader_with_layout` along with a corresponding
example text file to validate layout extraction from PDFs.
**Issue:** fixes#19735
**Dependencies:** This change requires updating the pypdf dependency
from version 3.4.0 to at least 4.0.0.
Additional changes include the addition of a new test
test_pypdf_loader_with_layout and an example text file to ensure the
functionality of layout extraction from PDFs aligns with the new
capabilities.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>