mirror of
https://github.com/hwchase17/langchain
synced 2024-11-10 01:10:59 +00:00
docs: Standardize ZhipuAIEmbeddings docstrings (#24933)
- **Description:** Standardize ZhipuAIEmbeddings rich docstrings. - **Issue:** the issue #24856
This commit is contained in:
parent
02db66d764
commit
ea505985c4
@ -6,25 +6,64 @@ from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
|
||||
class ZhipuAIEmbeddings(BaseModel, Embeddings):
|
||||
"""ZhipuAI embedding models.
|
||||
"""ZhipuAI embedding model integration.
|
||||
|
||||
To use, you should have the ``zhipuai`` python package installed, and the
|
||||
environment variable ``ZHIPU_API_KEY`` set with your API key or pass it
|
||||
as a named parameter to the constructor.
|
||||
Setup:
|
||||
|
||||
More instructions about ZhipuAi Embeddings, you can get it
|
||||
from https://open.bigmodel.cn/dev/api#vector
|
||||
To use, you should have the ``zhipuai`` python package installed, and the
|
||||
environment variable ``ZHIPU_API_KEY`` set with your API KEY.
|
||||
|
||||
More instructions about ZhipuAi Embeddings, you can get it
|
||||
from https://open.bigmodel.cn/dev/api#vector
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
pip install -U zhipuai
|
||||
export ZHIPU_API_KEY="your-api-key"
|
||||
|
||||
Key init args — completion params:
|
||||
model: Optional[str]
|
||||
Name of ZhipuAI model to use.
|
||||
api_key: str
|
||||
Automatically inferred from env var `ZHIPU_API_KEY` if not provided.
|
||||
|
||||
See full list of supported init args and their descriptions in the params section.
|
||||
|
||||
Instantiate:
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import ZhipuAIEmbeddings
|
||||
embeddings = ZhipuAIEmbeddings(api_key="your-api-key")
|
||||
text = "This is a test query."
|
||||
query_result = embeddings.embed_query(text)
|
||||
# texts = ["This is a test query1.", "This is a test query2."]
|
||||
# query_result = embeddings.embed_query(texts)
|
||||
"""
|
||||
|
||||
embed = ZhipuAIEmbeddings(
|
||||
model="embedding-2",
|
||||
# api_key="...",
|
||||
)
|
||||
|
||||
Embed single text:
|
||||
.. code-block:: python
|
||||
|
||||
input_text = "The meaning of life is 42"
|
||||
embed.embed_query(input_text)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[-0.003832892, 0.049372625, -0.035413884, -0.019301128, 0.0068899863, 0.01248398, -0.022153955, 0.006623926, 0.00778216, 0.009558191, ...]
|
||||
|
||||
|
||||
Embed multiple text:
|
||||
.. code-block:: python
|
||||
|
||||
input_texts = ["This is a test query1.", "This is a test query2."]
|
||||
embed.embed_documents(input_texts)
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
[0.0083934665, 0.037985895, -0.06684559, -0.039616987, 0.015481004, -0.023952313, ...],
|
||||
[-0.02713102, -0.005470169, 0.032321047, 0.042484466, 0.023290444, 0.02170547, ...]
|
||||
]
|
||||
""" # noqa: E501
|
||||
|
||||
client: Any = Field(default=None, exclude=True) #: :meta private:
|
||||
model: str = Field(default="embedding-2")
|
||||
|
Loading…
Reference in New Issue
Block a user