docs: Standardize ZhipuAIEmbeddings docstrings (#24933)

- **Description:** Standardize ZhipuAIEmbeddings rich docstrings.
- **Issue:** the issue #24856
This commit is contained in:
maang-h 2024-08-02 02:06:53 +08:00 committed by GitHub
parent 02db66d764
commit ea505985c4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -6,25 +6,64 @@ from langchain_core.utils import get_from_dict_or_env
class ZhipuAIEmbeddings(BaseModel, Embeddings):
"""ZhipuAI embedding models.
"""ZhipuAI embedding model integration.
To use, you should have the ``zhipuai`` python package installed, and the
environment variable ``ZHIPU_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Setup:
More instructions about ZhipuAi Embeddings, you can get it
from https://open.bigmodel.cn/dev/api#vector
To use, you should have the ``zhipuai`` python package installed, and the
environment variable ``ZHIPU_API_KEY`` set with your API KEY.
More instructions about ZhipuAi Embeddings, you can get it
from https://open.bigmodel.cn/dev/api#vector
.. code-block:: bash
pip install -U zhipuai
export ZHIPU_API_KEY="your-api-key"
Key init args completion params:
model: Optional[str]
Name of ZhipuAI model to use.
api_key: str
Automatically inferred from env var `ZHIPU_API_KEY` if not provided.
See full list of supported init args and their descriptions in the params section.
Instantiate:
Example:
.. code-block:: python
from langchain_community.embeddings import ZhipuAIEmbeddings
embeddings = ZhipuAIEmbeddings(api_key="your-api-key")
text = "This is a test query."
query_result = embeddings.embed_query(text)
# texts = ["This is a test query1.", "This is a test query2."]
# query_result = embeddings.embed_query(texts)
"""
embed = ZhipuAIEmbeddings(
model="embedding-2",
# api_key="...",
)
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
embed.embed_query(input_text)
.. code-block:: python
[-0.003832892, 0.049372625, -0.035413884, -0.019301128, 0.0068899863, 0.01248398, -0.022153955, 0.006623926, 0.00778216, 0.009558191, ...]
Embed multiple text:
.. code-block:: python
input_texts = ["This is a test query1.", "This is a test query2."]
embed.embed_documents(input_texts)
.. code-block:: python
[
[0.0083934665, 0.037985895, -0.06684559, -0.039616987, 0.015481004, -0.023952313, ...],
[-0.02713102, -0.005470169, 0.032321047, 0.042484466, 0.023290444, 0.02170547, ...]
]
""" # noqa: E501
client: Any = Field(default=None, exclude=True) #: :meta private:
model: str = Field(default="embedding-2")