Add chat history store based on Kafka.
Files added:
`libs/community/langchain_community/chat_message_histories/kafka.py`
`docs/docs/integrations/memory/kafka_chat_message_history.ipynb`
New issue to be created for future improvement:
1. Async method implementation.
2. Message retrieval based on timestamp.
3. Support for other configs when connecting to cloud hosted Kafka (e.g.
add `api_key` field)
4. Improve unit testing & integration testing.
**Description:**
- What I changed
- By specifying the `id_key` during the initialization of
`EnsembleRetriever`, it is now possible to determine which documents to
merge scores for based on the value corresponding to the `id_key`
element in the metadata, instead of `page_content`. Below is an example
of how to use the modified `EnsembleRetriever`:
```python
retriever = EnsembleRetriever(retrievers=[ret1, ret2], id_key="id") #
The Document returned by each retriever must keep the "id" key in its
metadata.
```
- Additionally, I added a script to easily test the behavior of the
`invoke` method of the modified `EnsembleRetriever`.
- Why I changed
- There are cases where you may want to calculate scores by treating
Documents with different `page_content` as the same when using
`EnsembleRetriever`. For example, when you want to ensemble the search
results of the same document described in two different languages.
- The previous `EnsembleRetriever` used `page_content` as the basis for
score aggregation, making the above usage difficult. Therefore, the
score is now calculated based on the specified key value in the
Document's metadata.
**Twitter handle:** @shimajiroxyz
- **Description:** add tool_messages_formatter for tool calling agent,
make tool messages can be formatted in different ways for your LLM.
- **Issue:** N/A
- **Dependencies:** N/A
**Standardizing DocumentLoader docstrings (of which there are many)**
This PR addresses issue #22866 and adds docstrings according to the
issue's specified format (in the appendix) for files csv_loader.py and
json_loader.py in langchain_community.document_loaders. In particular,
the following sections have been added to both CSVLoader and JSONLoader:
Setup, Instantiate, Load, Async load, and Lazy load. It may be worth
adding a 'Metadata' section to the JSONLoader docstring to clarify how
we want to extract the JSON metadata (using the `metadata_func`
argument). The files I used to walkthrough the various sections were
`example_2.json` from
[HERE](https://support.oneskyapp.com/hc/en-us/articles/208047697-JSON-sample-files)
and `hw_200.csv` from
[HERE](https://people.sc.fsu.edu/~jburkardt/data/csv/csv.html).
---------
Co-authored-by: lucast2021 <lucast2021@headroyce.org>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
- **Description:** A very small fix in the Docstring of
`DuckDuckGoSearchResults` identified in the following issue.
- **Issue:** #22961
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **PR title**: "community: Fix#22975 (Add SSL Verification Option to
Requests Class in langchain_community)"
- **PR message**:
- **Description:**
- Added an optional verify parameter to the Requests class with a
default value of True.
- Modified the get, post, patch, put, and delete methods to include the
verify parameter.
- Updated the _arequest async context manager to include the verify
parameter.
- Added the verify parameter to the GenericRequestsWrapper class and
passed it to the Requests class.
- **Issue:** This PR fixes issue #22975.
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** @lunara_x
You can check this change with below code.
```python
from langchain_openai.chat_models import ChatOpenAI
from langchain.requests import RequestsWrapper
from langchain_community.agent_toolkits.openapi import planner
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
with open("swagger.yaml") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
swagger_api_spec = reduce_openapi_spec(data)
llm = ChatOpenAI(model='gpt-4o')
swagger_requests_wrapper = RequestsWrapper(verify=False) # modified point
superset_agent = planner.create_openapi_agent(swagger_api_spec, swagger_requests_wrapper, llm, allow_dangerous_requests=True, handle_parsing_errors=True)
superset_agent.run(
"Tell me the number and types of charts and dashboards available."
)
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** The PR #22777 introduced a bug in
`_similarity_search_without_score` which was raising the
`OperationFailure` error. The mistake was syntax error for MongoDB
pipeline which has been corrected now.
- **Issue:** #22770
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Thank you for contributing to LangChain!
- [x] **PR title**: "community: OCI GenAI embedding batch size"
- [x] **PR message**:
- **Issue:** #22985
- [ ] **Add tests and docs**: N/A
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Anders Swanson <anders.swanson@oracle.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- StopIteration can't be set on an asyncio.Future it raises a TypeError
and leaves the Future pending forever so we need to convert it to a
RuntimeError
- Refactor standard test classes to make them easier to configure
- Update openai to support stop_sequences init param
- Update groq to support stop_sequences init param
- Update fireworks to support max_retries init param
- Update ChatModel.bind_tools to type tool_choice
- Update groq to handle tool_choice="any". **this may be controversial**
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Langchain is very popular among developers in China, but there are still
no good Chinese books or documents, so I want to add my own Chinese
resources on langchain topics, hoping to give Chinese readers a better
experience using langchain. This is not a translation of the official
langchain documentation, but my understanding.
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Support batch size**
Baichuan updates the document, indicating that up to 16 documents can be
imported at a time
- **Standardized model init arg names**
- baichuan_api_key -> api_key
- model_name -> model
Here we add `stream_usage` to ChatOpenAI as:
1. a boolean attribute
2. a kwarg to _stream and _astream.
Question: should the `stream_usage` attribute be `bool`, or `bool |
None`?
Currently I've kept it `bool` and defaulted to False. It was implemented
on
[ChatAnthropic](e832bbb486/libs/partners/anthropic/langchain_anthropic/chat_models.py (L535))
as a bool. However, to maintain support for users who access the
behavior via OpenAI's `stream_options` param, this ends up being
possible:
```python
llm = ChatOpenAI(model_kwargs={"stream_options": {"include_usage": True}})
assert not llm.stream_usage
```
(and this model will stream token usage).
Some options for this:
- it's ok
- make the `stream_usage` attribute bool or None
- make an \_\_init\_\_ for ChatOpenAI, set a `._stream_usage` attribute
and read `.stream_usage` from a property
Open to other ideas as well.
**Description:** This PR adds a chat model integration for [Snowflake
Cortex](https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions),
which gives an instant access to industry-leading large language models
(LLMs) trained by researchers at companies like Mistral, Reka, Meta, and
Google, including [Snowflake
Arctic](https://www.snowflake.com/en/data-cloud/arctic/), an open
enterprise-grade model developed by Snowflake.
**Dependencies:** Snowflake's
[snowpark](https://pypi.org/project/snowflake-snowpark-python/) library
is required for using this integration.
**Twitter handle:** [@gethouseware](https://twitter.com/gethouseware)
- [x] **Add tests and docs**:
1. integration tests:
`libs/community/tests/integration_tests/chat_models/test_snowflake.py`
2. unit tests:
`libs/community/tests/unit_tests/chat_models/test_snowflake.py`
3. example notebook: `docs/docs/integrations/chat/snowflake.ipynb`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Adds `response_metadata` to stream responses from OpenAI. This is
returned with `invoke` normally, but wasn't implemented for `stream`.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
## Description
While `YouRetriever` supports both You.com's Search and News APIs, news
is supported as an afterthought.
More specifically, not all of the News API parameters are exposed for
the user, only those that happen to overlap with the Search API.
This PR:
- improves support for both APIs, exposing the remaining News API
parameters while retaining backward compatibility
- refactor some REST parameter generation logic
- updates the docstring of `YouSearchAPIWrapper`
- add input validation and warnings to ensure parameters are properly
set by user
- 🚨 Breaking: Limit the news results to `k` items
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Ollama has a raw option now.
https://github.com/ollama/ollama/blob/main/docs/api.md
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
**Issue:**
When using the similarity_search_with_score function in
ElasticsearchStore, I expected to pass in the query_vector that I have
already obtained. I noticed that the _search function does support the
query_vector parameter, but it seems to be ineffective. I am attempting
to resolve this issue.
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22654.
Modified `langchain_text_splitters.HTMLSectionSplitter`, where in the
latest version `dict` data structure is used to store sections from a
html document, in function `split_html_by_headers`. The header/section
element names serve as dict keys. This can be a problem when duplicate
header/section element names are present in a single html document.
Latter ones can replace former ones with the same name. Therefore some
contents can be miss after html text splitting is conducted.
Using a list to store sections can hopefully solve the problem. A Unit
test considering duplicate header names has been added.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>