Commit Graph

217 Commits

Author SHA1 Message Date
2jimoo
7fc903464a
community: Add document manager and mongo document manager (#17320)
- **Description:** 
    - Add DocumentManager class, which is a nosql record manager. 
- In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, DocumentManager inherits
RecordManager.
    - Also I added the MongoDB implementation of Document Manager too.
  - **Dependencies:** pymongo, motor
  
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Add DocumentManager class, which is a no sql record
manager. To use index method and aindex method in indexes._api.py,
Document Manager inherits RecordManager.Add the MongoDB implementation
of Document Manager.
  - **Dependencies:** pymongo, motor

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-23 21:32:52 -05:00
Chad Juliano
50ba3c68bb
community[minor]: add Kinetica LLM wrapper (#17879)
**Description:** Initial pull request for Kinetica LLM wrapper
**Issue:** N/A
**Dependencies:** No new dependencies for unit tests. Integration tests
require gpudb, typeguard, and faker
**Twitter handle:** @chad_juliano

Note: There is another pull request for Kinetica vectorstore. Ultimately
we would like to make a partner package but we are starting with a
community contribution.
2024-02-22 16:02:00 -08:00
Brad Erickson
ecd72d26cf
community: Bugfix - correct Ollama API path to avoid HTTP 307 (#17895)
Sets the correct /api/generate path, without ending /, to reduce HTTP
requests.

Reference:

https://github.com/ollama/ollama/blob/efe040f8/docs/api.md#generate-request-streaming

Before:

    DEBUG: Starting new HTTP connection (1): localhost:11434
    DEBUG: http://localhost:11434 "POST /api/generate/ HTTP/1.1" 307 0
    DEBUG: http://localhost:11434 "POST /api/generate HTTP/1.1" 200 None

After:

    DEBUG: Starting new HTTP connection (1): localhost:11434
    DEBUG: http://localhost:11434 "POST /api/generate HTTP/1.1" 200 None
2024-02-22 11:59:55 -05:00
Ian
3019a594b7
community[minor]: Add tidb loader support (#17788)
This pull request support loading data from TiDB database with
Langchain.

A simple usage:
```
from  langchain_community.document_loaders import TiDBLoader

CONNECTION_STRING = "mysql+pymysql://root@127.0.0.1:4000/test"

QUERY = "select id, name, description from items;"
loader = TiDBLoader(
    connection_string=CONNECTION_STRING,
    query=QUERY,
    page_content_columns=["name", "description"],
    metadata_columns=["id"],
)
documents = loader.load()
print(documents)
```
2024-02-21 16:42:33 -08:00
ehude
9e54c227f1
community[patch]: Bug Neo4j VectorStore when having multiple indexes the sort is not working and the store that returned is random (#17396)
Bug fix: when having multiple indexes the sort is not working and the
store that returned is random.
The following small fix resolves the issue.
2024-02-21 16:33:33 -08:00
Michael Feil
242981b8f0
community[minor]: infinity embedding local option (#17671)
**drop-in-replacement for sentence-transformers
inference.**

https://github.com/langchain-ai/langchain/discussions/17670

tldr from the discussion above -> around a 4x-22x speedup over using
SentenceTransformers / huggingface embeddings. For more info:
https://github.com/michaelfeil/infinity (pure-python dependency)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-21 16:33:13 -08:00
Zachary Toliver
29ee0496b6
community[patch]: Allow override of 'fetch_schema_from_transport' in the GraphQL tool (#17649)
- **Description:** In order to override the bool value of
"fetch_schema_from_transport" in the GraphQLAPIWrapper, a
"fetch_schema_from_transport" value needed to be added to the
"_EXTRA_OPTIONAL_TOOLS" dictionary in load_tools in the "graphql" key.
The parameter "fetch_schema_from_transport" must also be passed in to
the GraphQLAPIWrapper to allow reading of the value when creating the
client. Passing as an optional parameter is probably best to avoid
breaking changes. This change is necessary to support GraphQL instances
that do not support fetching schema, such as TigerGraph. More info here:
[TigerGraph GraphQL Schema
Docs](https://docs.tigergraph.com/graphql/current/schema)
  - **Threads handle:** @zacharytoliver

---------

Co-authored-by: Zachary Toliver <zt10191991@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-21 15:32:43 -08:00
volodymyr-memsql
0a9a519a39
community[patch]: Added add_images method to SingleStoreDB vector store (#17871)
In this pull request, we introduce the add_images method to the
SingleStoreDB vector store class, expanding its capabilities to handle
multi-modal embeddings seamlessly. This method facilitates the
incorporation of image data into the vector store by associating each
image's URI with corresponding document content, metadata, and either
pre-generated embeddings or embeddings computed using the embed_image
method of the provided embedding object.

the change includes integration tests, validating the behavior of the
add_images. Additionally, we provide a notebook showcasing the usage of
this new method.

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2024-02-21 15:16:32 -08:00
Guangdong Liu
47b1b7092d
community[minor]: Add SparkLLM to community (#17702) 2024-02-20 11:23:47 -08:00
Guangdong Liu
3ba1cb8650
community[minor]: Add SparkLLM Text Embedding Model and SparkLLM introduction (#17573) 2024-02-20 11:22:27 -08:00
Virat Singh
92e52e89ca
community: Add PolygonTickerNews Tool (#17808)
Description:
In this PR, I am adding a PolygonTickerNews Tool, which can be used to
get the latest news for a given ticker / stock.

Twitter handle: [@virattt](https://twitter.com/virattt)
2024-02-20 10:15:29 -08:00
CogniJT
919ebcc596
community[minor]: CogniSwitch Agent Toolkit for LangChain (#17312)
**Description**: CogniSwitch focusses on making GenAI usage more
reliable. It abstracts out the complexity & decision making required for
tuning processing, storage & retrieval. Using simple APIs documents /
URLs can be processed into a Knowledge Graph that can then be used to
answer questions.

**Dependencies**: No dependencies. Just network calls & API key required
**Tag maintainer**: @hwchase17
**Twitter handle**: https://github.com/CogniSwitch
**Documentation**: Please check
`docs/docs/integrations/toolkits/cogniswitch.ipynb`
**Tests**: The usual tool & toolkits tests using `test_imports.py`

PR has passed linting and testing before this submission.

---------

Co-authored-by: Saicharan Sridhara <145636106+saiCogniswitch@users.noreply.github.com>
2024-02-19 10:54:13 -08:00
Aymeric Roucher
0d294760e7
Community: Fuse HuggingFace Endpoint-related classes into one (#17254)
## Description
Fuse HuggingFace Endpoint-related classes into one:
-
[HuggingFaceHub](5ceaf784f3/libs/community/langchain_community/llms/huggingface_hub.py)
-
[HuggingFaceTextGenInference](5ceaf784f3/libs/community/langchain_community/llms/huggingface_text_gen_inference.py)
- and
[HuggingFaceEndpoint](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py)

Are fused into
- HuggingFaceEndpoint

## Issue
The deduplication of classes was creating a lack of clarity, and
additional effort to develop classes leads to issues like [this
hack](5ceaf784f3/libs/community/langchain_community/llms/huggingface_endpoint.py (L159)).

## Dependancies

None, this removes dependancies.

## Twitter handle

If you want to post about this: @AymericRoucher

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-19 10:33:15 -08:00
Raghav Dixit
6c18f73ca5
community[patch]: LanceDB integration improvements/fixes (#16173)
Hi, I'm from the LanceDB team.

Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.

Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain

PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
2024-02-19 10:22:02 -08:00
Christophe Bornet
e92e96193f
community[minor]: Add async methods to the AstraDB BaseStore (#16872)
---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-19 10:11:49 -08:00
Guangdong Liu
73edf17b4e
community[minor]: Add Apache Doris as vector store (#17527)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-18 12:05:58 -07:00
Nejc Habjan
b4fa847a90
community[minor]: add exclude parameter to DirectoryLoader (#17316)
- **Description:** adds an `exclude` parameter to the DirectoryLoader
class, based on similar behavior in GenericLoader
- **Issue:** discussed in
https://github.com/langchain-ai/langchain/discussions/9059 and I think
in some other issues that I cannot find at the moment 🙇
  - **Dependencies:** None
  - **Twitter handle:** don't have one sorry! Just https://github/nejch

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-16 09:42:42 -05:00
Bagatur
8f14234afb
infra: ignore flakey lua test (#17618) 2024-02-16 05:02:58 -07:00
morgana
9d7ca7df6e
community[patch]: update copy of metadata in rockset vectorstore integration (#17612)
- **Description:** This fixes an issue with working with RecordManager.
RecordManager was generating new hashes on documents because `add_texts`
was modifying the metadata directly. Additionally moved some tests to
unit tests since that was a more appropriate home.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** `@_morgan_adams_`
2024-02-15 23:13:40 -07:00
Moshe Berchansky
20a56fe0a2
community[minor]: Add QuantizedEmbedders (#17391)
**Description:** 
* adding Quantized embedders using optimum-intel and
intel-extension-for-pytorch.
* added mdx documentation and example notebooks 
* added embedding import testing.

**Dependencies:** 
optimum = {extras = ["neural-compressor"], version = "^1.14.0", optional
= true}
intel_extension_for_pytorch = {version = "^2.2.0", optional = true}

Dependencies have been added to pyproject.toml for the community lib.  

**Twitter handle:** @peter_izsak

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-15 11:01:24 -08:00
Amir Karbasi
bccc9241ea
community[patch]: Resolve KuzuQAChain API Changes (#16885)
- **Description:** Updates to the Kuzu API had broken this
functionality. These updates resolve those issues and add a new test to
demonstrate the updates.
- **Issue:** #11874
- **Dependencies:** No new dependencies
- **Twitter handle:** @amirk08


Test results:
```
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_no_params PASSED                                   [ 33%]
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params PASSED                                      [ 66%]
tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema PASSED                                    [100%]

=================================================== slowest 5 durations =================================================== 
0.53s call     tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema
0.34s call     tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_no_params
0.28s call     tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params
0.03s teardown tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_refresh_schema
0.02s teardown tests/integration_tests/graphs/test_kuzu.py::TestKuzu::test_query_params
==================================================== 3 passed in 1.27s ==================================================== 
```
2024-02-15 10:18:37 -08:00
Christophe Bornet
789cd5198d
community[patch]: Use astrapy built-in pagination prefetch in AstraDBLoader (#17569) 2024-02-15 09:52:56 -05:00
Christophe Bornet
ff1f985a2a
community: Fix some mypy types in cassandra doc loader (#17570)
Thank you!
2024-02-15 09:45:22 -05:00
nvpranak
91bcc9c5c9
community[minor]: Nemo embeddings(#16206)
This PR is adding support for NVIDIA NeMo embeddings issue #16095.

---------

Co-authored-by: Praveen Nakshatrala <pnakshatrala@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 13:25:42 -08:00
wulixuan
c776cfc599
community[minor]: integrate with model Yuan2.0 (#15411)
1. integrate with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. update `langchain.llms`
3. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:46:20 -08:00
volodymyr-memsql
e36bc379f2
community[patch]: Add vector index support to SingleStoreDB VectorStore (#17308)
This pull request introduces support for various Approximate Nearest
Neighbor (ANN) vector index algorithms in the VectorStore class,
starting from version 8.5 of SingleStore DB. Leveraging this enhancement
enables users to harness the power of vector indexing, significantly
boosting search speed, particularly when handling large sets of vectors.

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:43:12 -08:00
Kate Silverstein
0bc4a9b3fc
community[minor]: Adds Llamafile as an LLM (#17431)
* **Description:** Adds a simple LLM implementation for interacting with
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
* **Dependencies:** N/A
* **Issue:** N/A

**Detail**
[llamafile](https://github.com/Mozilla-Ocho/llamafile) lets you run LLMs
locally from a single file on most computers without installing any
dependencies.

To use the llamafile LLM implementation, the user needs to:

1. Download a llamafile e.g.
https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true
2. Make the file executable.
3. Run the llamafile in 'server mode'. (All llamafiles come packaged
with a lightweight server; by default, the server listens at
`http://localhost:8080`.)


```bash
wget https://url/of/model.llamafile
chmod +x model.llamafile
./model.llamafile --server --nobrowser
```

Now, the user can invoke the LLM via the LangChain client:

```python
from langchain_community.llms.llamafile import Llamafile

llm = Llamafile()

llm.invoke("Tell me a joke.")
```
2024-02-14 11:15:24 -08:00
Qihui Xie
5738143d4b
add mongodb_store (#13801)
# Add MongoDB storage
  - **Description:** 
  Add MongoDB Storage as an option for large doc store. 

Example usage: 
```Python
# Instantiate the MongodbStore with a MongoDB connection
from langchain.storage import MongodbStore

mongo_conn_str = "mongodb://localhost:27017/"
mongodb_store = MongodbStore(mongo_conn_str, db_name="test-db",
                                collection_name="test-collection")

# Set values for keys
doc1 = Document(page_content='test1')
doc2 = Document(page_content='test2')
mongodb_store.mset([("key1", doc1), ("key2", doc2)])

# Get values for keys
values = mongodb_store.mget(["key1", "key2"])
# [doc1, doc2]

# Iterate over keys
for key in mongodb_store.yield_keys():
    print(key)

# Delete keys
mongodb_store.mdelete(["key1", "key2"])
 ```

  - **Dependencies:**
  Use `mongomock` for integration test.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-13 22:33:22 -05:00
wulixuan
5d06797905
community[minor]: integrate chat models with Yuan2.0 (#16575)
1. integrate chat models with
[`Yuan2.0`](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/README-EN.md)
2. add a new doc for [Yuan2.0
integration](docs/docs/integrations/llms/yuan2.ipynb)
 
Yuan2.0 is a new generation Fundamental Large Language Model developed
by IEIT System. We have published all three models, Yuan 2.0-102B, Yuan
2.0-51B, and Yuan 2.0-2B.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-13 10:55:14 -08:00
Ian Gregory
e5472b5eb8
Framework for supporting more languages in LanguageParser (#13318)
## Description

I am submitting this for a school project as part of a team of 5. Other
team members are @LeilaChr, @maazh10, @Megabear137, @jelalalamy. This PR
also has contributions from community members @Harrolee and @Mario928.

Initial context is in the issue we opened (#11229).

This pull request adds:

- Generic framework for expanding the languages that `LanguageParser`
can handle, using the
[tree-sitter](https://github.com/tree-sitter/py-tree-sitter#py-tree-sitter)
parsing library and existing language-specific parsers written for it
- Support for the following additional languages in `LanguageParser`:
  - C
  - C++
  - C#
  - Go
- Java (contributed by @Mario928
https://github.com/ThatsJustCheesy/langchain/pull/2)
  - Kotlin
  - Lua
  - Perl
  - Ruby
  - Rust
  - Scala
- TypeScript (contributed by @Harrolee
https://github.com/ThatsJustCheesy/langchain/pull/1)

Here is the [design
document](https://docs.google.com/document/d/17dB14cKCWAaiTeSeBtxHpoVPGKrsPye8W0o_WClz2kk)
if curious, but no need to read it.

## Issues

- Closes #11229
- Closes #10996
- Closes #8405

## Dependencies

`tree_sitter` and `tree_sitter_languages` on PyPI. We have tried to add
these as optional dependencies.

## Documentation

We have updated the list of supported languages, and also added a
section to `source_code.ipynb` detailing how to add support for
additional languages using our framework.

## Maintainer

- @hwchase17 (previously reviewed
https://github.com/langchain-ai/langchain/pull/6486)

Thanks!!

## Git commits

We will gladly squash any/all of our commits (esp merge commits) if
necessary. Let us know if this is desirable, or if you will be
squash-merging anyway.

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Maaz Hashmi <mhashmi373@gmail.com>
Co-authored-by: LeilaChr <87657694+LeilaChr@users.noreply.github.com>
Co-authored-by: Jeremy La <jeremylai511@gmail.com>
Co-authored-by: Megabear137 <zubair.alnoor27@gmail.com>
Co-authored-by: Lee Harrold <lhharrold@sep.com>
Co-authored-by: Mario928 <88029051+Mario928@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-13 08:45:49 -08:00
Sridhar Ramaswamy
9f1cbbc6ed
community[minor]: Add pebblo safe document loader (#16862)
- **Description:** Pebblo opensource project enables developers to
safely load data to their Gen AI apps. It identifies semantic topics and
entities found in the loaded data and summarizes them in a
developer-friendly report.
  - **Dependencies:** none
  - **Twitter handle:** srics

@hwchase17
2024-02-12 21:56:12 -08:00
mhavey
1bbb64d956
community[minor], langchian[minor]: Add Neptune Rdf graph and chain (#16650)
**Description**: This PR adds a chain for Amazon Neptune graph database
RDF format. It complements the existing Neptune Cypher chain. The PR
also includes a Neptune RDF graph class to connect to, introspect, and
query a Neptune RDF graph database from the chain. A sample notebook is
provided under docs that demonstrates the overall effect: invoking the
chain to make natural language queries against Neptune using an LLM.

**Issue**: This is a new feature
 
**Dependencies**: The RDF graph class depends on the AWS boto3 library
if using IAM authentication to connect to the Neptune database.

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 21:30:20 -08:00
Andreas Motl
1fdd9bd980
community/SQLDatabase: Generalize and trim software tests (#16659)
- **Description:** Improve test cases for `SQLDatabase` adapter
component, see
[suggestion](https://github.com/langchain-ai/langchain/pull/16655#pullrequestreview-1846749474).
  - **Depends on:** GH-16655
  - **Addressed to:** @baskaryan, @cbornet, @eyurtsev

_Remark: This PR is stacked upon GH-16655, so that one will need to go
in first._

Edit: Thank you for bringing in GH-17191, @eyurtsev. This is a little
aftermath, improving/streamlining the corresponding test cases.
2024-02-12 22:58:34 -05:00
Chris
f9f5626ca4
community[patch]: Fix github search issues and PRs PaginatedList has no len() error (#16806)
**Description:** 
Bugfix: Langchain_community's GitHub Api wrapper throws a TypeError when
searching for issues and/or PRs (the `search_issues_and_prs` method).
This is because PyGithub's PageinatedList type does not support the
len() method. See https://github.com/PyGithub/PyGithub/issues/1476

![image](https://github.com/langchain-ai/langchain/assets/8849021/57390b11-ed41-4f48-ba50-f3028610789c)
  **Dependencies:** None 
  **Twitter handle**: @ChrisKeoghNZ
  
I haven't registered an issue as it would take me longer to fill the
template out than to make the fix, but I'm happy to if that's deemed
essential.

I've added a simple integration test to cover this as there were no
existing unit tests and it was going to be tricky to set them up.

Co-authored-by: Chris Keogh <chris.keogh@xero.com>
2024-02-12 19:50:59 -08:00
morgana
722aae4fd1
community: add delete method to rocksetdb vectorstore to support recordmanager (#17030)
- **Description:** This adds a delete method so that rocksetdb can be
used with `RecordManager`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@_morgan_adams_`

---------

Co-authored-by: Rockset API Bot <admin@rockset.io>
2024-02-12 19:50:20 -08:00
yin1991
37ef6ac113
community[patch]: Add Pagination to GitHubIssuesLoader for Efficient GitHub Issues Retrieval (#16934)
- **Description:** Add Pagination to GitHubIssuesLoader for Efficient
GitHub Issues Retrieval
- **Issue:** [the issue # it fixes if
applicable,](https://github.com/langchain-ai/langchain/issues/16864)

---------

Co-authored-by: root <root@ip-172-31-46-160.ap-southeast-1.compute.internal>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 18:30:36 -08:00
Spencer Kelly
54fa78c887
community[patch]: fixed vector similarity filtering (#16967)
**Description:** changed filtering so that failed filter doesn't add
document to results. Currently filtering is entirely broken and all
documents are returned whether or not they pass the filter.

fixes issue introduced in
https://github.com/langchain-ai/langchain/pull/16190
2024-02-12 14:52:57 -08:00
Abhijeeth Padarthi
584b647b96
community[minor]: AWS Athena Document Loader (#15625)
- **Description:** Adds the document loader for [AWS
Athena](https://aws.amazon.com/athena/), a serverless and interactive
analytics service.
  - **Dependencies:** Added boto3 as a dependency
2024-02-12 12:53:40 -08:00
david-tempelmann
93da18b667
community[minor]: Add mmr and similarity_score_threshold retrieval to DatabricksVectorSearch (#16829)
- **Description:** This PR adds support for `search_types="mmr"` and
`search_type="similarity_score_threshold"` to retrievers using
`DatabricksVectorSearch`,
  - **Issue:** 
  - **Dependencies:**
  - **Twitter handle:**

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 12:51:37 -08:00
Erick Friis
3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
Quang Hoa
54c1fb3f25
community[patch]: Make some functions work with Milvus (#10695)
**Description**
Make some functions work with Milvus:
1. get_ids: Get primary keys by field in the metadata
2. delete: Delete one or more entities by ids
3. upsert: Update/Insert one or more entities

**Issue**
None
**Dependencies**
None
**Tag maintainer:**
@hwchase17 
**Twitter handle:**
None

---------

Co-authored-by: HoaNQ9 <hoanq.1811@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:21:31 -08:00
kYLe
c9999557bf
community[patch]: Modify LLMs/Anyscale work with OpenAI API v1 (#14206)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
- **Description:** 
1. Modify LLMs/Anyscale to work with OAI v1
2. Get rid of openai_ prefixed variables in Chat_model/ChatAnyscale
3. Modify `anyscale_api_base` to `anyscale_base_url` to follow OAI name
convention (reverted)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:11:18 -08:00
Bagatur
65e97c9b53
infra: mv SQLDatabase tests to community (#17276) 2024-02-08 17:05:43 -08:00
Armin Stepanyan
641efcf41c
community: add runtime kwargs to HuggingFacePipeline (#17005)
This PR enables changing the behaviour of huggingface pipeline between
different calls. For example, before this PR there's no way of changing
maximum generation length between different invocations of the chain.
This is desirable in cases, such as when we want to scale the maximum
output size depending on a dynamic prompt size.

Usage example:

```python
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
hf = HuggingFacePipeline(pipeline=pipe)

hf("Say foo:", pipeline_kwargs={"max_new_tokens": 42})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:58:31 -08:00
Scott Nath
a32798abd7
community: Add you.com utility, update you retriever integration docs (#17014)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

- **Description: changes to you.com files** 
    - general cleanup
- adds community/utilities/you.py, moving bulk of code from retriever ->
utility
    - removes `snippet` as endpoint
    - adds `news` as endpoint
    - adds more tests

<s>**Description: update community MAKE file** 
    - adds `integration_tests`
    - adds `coverage`</s>

- **Issue:** the issue # it fixes if applicable,
- [For New Contributors: Update Integration
Documentation](https://github.com/langchain-ai/langchain/issues/15664#issuecomment-1920099868)
- **Dependencies:** n/a
- **Twitter handle:** @scottnath
- **Mastodon handle:** scottnath@mastodon.social

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-08 13:47:50 -08:00
Liang Zhang
7306600e2f
community[patch]: Support SerDe transform functions in Databricks LLM (#16752)
**Description:** Databricks LLM does not support SerDe the
transform_input_fn and transform_output_fn. After saving and loading,
the LLM will be broken. This PR serialize these functions into a hex
string using pickle, and saving the hex string in the yaml file. Using
pickle to serialize a function can be flaky, but this is a simple
workaround that unblocks many use cases. If more sophisticated SerDe is
needed, we can improve it later.

Test:
Added a simple unit test.
I did manual test on Databricks and it works well.
The saved yaml looks like:
```
llm:
      _type: databricks
      cluster_driver_port: null
      cluster_id: null
      databricks_uri: databricks
      endpoint_name: databricks-mixtral-8x7b-instruct
      extra_params: {}
      host: e2-dogfood.staging.cloud.databricks.com
      max_tokens: null
      model_kwargs: null
      n: 1
      stop: null
      task: null
      temperature: 0.0
      transform_input_fn: 80049520000000000000008c085f5f6d61696e5f5f948c0f7472616e73666f726d5f696e7075749493942e
      transform_output_fn: null
```

@baskaryan

```python
from langchain_community.embeddings import DatabricksEmbeddings
from langchain_community.llms import Databricks
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
import mlflow

embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")

def transform_input(**request):
  request["messages"] = [
    {
      "role": "user",
      "content": request["prompt"]
    }
  ]
  del request["prompt"]
  return request

llm = Databricks(endpoint_name="databricks-mixtral-8x7b-instruct", transform_input_fn=transform_input)

persist_dir = "faiss_databricks_embedding"

# Create the vector db, persist the db to a local fs folder
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
db = FAISS.from_documents(docs, embeddings)
db.save_local(persist_dir)

def load_retriever(persist_directory):
    embeddings = DatabricksEmbeddings(endpoint="databricks-bge-large-en")
    vectorstore = FAISS.load_local(persist_directory, embeddings)
    return vectorstore.as_retriever()

retriever = load_retriever(persist_dir)
retrievalQA = RetrievalQA.from_llm(llm=llm, retriever=retriever)
with mlflow.start_run() as run:
    logged_model = mlflow.langchain.log_model(
        retrievalQA,
        artifact_path="retrieval_qa",
        loader_fn=load_retriever,
        persist_dir=persist_dir,
    )

# Load the retrievalQA chain
loaded_model = mlflow.pyfunc.load_model(logged_model.model_uri)
print(loaded_model.predict([{"query": "What did the president say about Ketanji Brown Jackson"}]))

```
2024-02-08 13:09:50 -08:00
Neli Hateva
9bb5157a3d
langchain[patch], community[patch]: Fixes in the Ontotext GraphDB Graph and QA Chain (#17239)
- **Description:** Fixes in the Ontotext GraphDB Graph and QA Chain
related to the error handling in case of invalid SPARQL queries, for
which `prepareQuery` doesn't throw an exception, but the server returns
400 and the query is indeed invalid
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-02-08 12:05:43 -08:00
ByeongUk Choi
b88329e9a5
community[patch]: Implement Unique ID Enforcement in FAISS (#17244)
**Description:**
Implemented unique ID validation in the FAISS component to ensure all
document IDs are distinct. This update resolves issues related to
non-unique IDs, such as inconsistent behavior during deletion processes.
2024-02-08 12:03:33 -08:00
Luiz Ferreira
34d2daffb3
community[patch]: Fix chat openai unit test (#17124)
- **Description:** 
Actually the test named `test_openai_apredict` isn't testing the
apredict method from ChatOpenAI.
  - **Twitter handle:**
  https://twitter.com/OAlmofadas
2024-02-07 22:08:26 -05:00
Frank
ef082c77b1
community[minor]: add github file loader to load any github file content b… (#15305)
### Description
support load any github file content based on file extension.  

Why not use [git
loader](https://python.langchain.com/docs/integrations/document_loaders/git#load-existing-repository-from-disk)
?
git loader clones the whole repo even only interested part of files,
that's too heavy. This GithubFileLoader only downloads that you are
interested files.

### Twitter handle
my twitter: @shufanhaotop

---------

Co-authored-by: Hao Fan <h_fan@apple.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-06 09:42:33 -08:00
Ryan Kraus
f027696b5f
community: Added new Utility runnables for NVIDIA Riva. (#15966)
**Please tag this issue with `nvidia_genai`**

- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A

All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable

The following Python function is an example of creating a chain that
makes use of both of these Runnables:

```python
def create(
    config: Configuration,
    audio_encoding: RivaAudioEncoding,
    sample_rate: int,
    audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
    """Create a new instance of the chain."""
    _LOGGER.info("Instantiating the chain.")

    # create the riva asr client
    riva_asr = RivaASR(
        url=str(config.riva_asr.service.url),
        ssl_cert=config.riva_asr.service.ssl_cert,
        encoding=audio_encoding,
        audio_channel_count=audio_channels,
        sample_rate_hertz=sample_rate,
        profanity_filter=config.riva_asr.profanity_filter,
        enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
        language_code=config.riva_asr.language_code,
    )

    # create the prompt template
    prompt = PromptTemplate.from_template("{user_input}")

    # model = ChatOpenAI()
    model = ChatNVIDIA(model="mixtral_8x7b")  # type: ignore

    # create the riva tts client
    riva_tts = RivaTTS(
        url=str(config.riva_asr.service.url),
        ssl_cert=config.riva_asr.service.ssl_cert,
        output_directory=config.riva_tts.output_directory,
        language_code=config.riva_tts.language_code,
        voice_name=config.riva_tts.voice_name,
    )

    # construct and return the chain
    return {"user_input": riva_asr} | prompt | model | riva_tts  # type: ignore
```

The following code is an example of creating a new audio stream for
Riva:

```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
    await input_stream.aput(chunk)
input_stream.close()
```

The following code is an example of how to execute the chain with
RivaASR and RivaTTS

```python
output_stream = asyncio.Queue()
while not input_stream.complete:
    async for chunk in chain.astream(input_stream):
        output_stream.put(chunk)    
```

Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.

---------

Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-05 19:50:50 -08:00
Bagatur
6e2ed9671f
infra: fix breebs test lint (#17075) 2024-02-05 16:09:48 -08:00
Alex Boury
334b6ebdf3
community[minor]: Breebs docs retriever (#16578)
- **Description:** Implementation of breeb retriever with integration
tests ->
libs/community/tests/integration_tests/retrievers/test_breebs.py and
documentation (notebook) ->
docs/docs/integrations/retrievers/breebs.ipynb.
  - **Dependencies:** None
2024-02-05 15:51:08 -08:00
Harrison Chase
4eda647fdd
infra: add -p to mkdir in lint steps (#17013)
Previously, if this did not find a mypy cache then it wouldnt run

this makes it always run

adding mypy ignore comments with existing uncaught issues to unblock other prs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-05 11:22:06 -08:00
Killinsun - Ryota Takeuchi
bcfce146d8
community[patch]: Correct the calling to collection_name in qdrant (#16920)
## Description

In #16608, the calling `collection_name` was wrong.
I made a fix for it. 
Sorry for the inconvenience!

## Issue

https://github.com/langchain-ai/langchain/issues/16962

## Dependencies

N/A



<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Kumar Shivendu <kshivendu1@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-04 10:45:35 -08:00
Erick Friis
b1a847366c
community: revert SQL Stores (#16912)
This reverts commit cfc225ecb3.


https://github.com/langchain-ai/langchain/pull/15909#issuecomment-1922418097

These will have existed in langchain-community 0.0.16 and 0.0.17.
2024-02-01 16:37:40 -08:00
Christophe Bornet
af8c5c185b
langchain[minor],community[minor]: Add async methods in BaseLoader (#16634)
Adds:
* methods `aload()` and `alazy_load()` to interface `BaseLoader`
* implementation for class `MergedDataLoader `
* support for class `BaseLoader` in async function `aindex()` with unit
tests

Note: this is compatible with existing `aload()` methods that some
loaders already had.

**Twitter handle:** @cbornet_

---------

Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
2024-01-31 11:08:11 -08:00
Christophe Bornet
744070ee85
Add async methods for the AstraDB VectorStore (#16391)
- **Description**: fully async versions are available for astrapy 0.7+.
For older astrapy versions or if the user provides a sync client without
an async one, the async methods will call the sync ones wrapped in
`run_in_executor`
  - **Twitter handle:** cbornet_
2024-01-29 20:22:25 -08:00
baichuan-assistant
f8f2649f12
community: Add Baichuan LLM to community (#16724)
Replace this entire comment with:
- **Description:** Add Baichuan LLM to integration/llm, also updated
related docs.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-29 20:08:24 -08:00
thiswillbeyourgithub
1d082359ee
community: add support for callable filters in FAISS (#16190)
- **Description:**
Filtering in a FAISS vectorstores is very inflexible and doesn't allow
that many use case. I think supporting callable like this enables a lot:
regular expressions, condition on multiple keys etc. **Note** I had to
manually alter a test. I don't understand if it was falty to begin with
or if there is something funky going on.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None

Signed-off-by: thiswillbeyourgithub <26625900+thiswillbeyourgithub@users.noreply.github.com>
2024-01-29 20:05:56 -08:00
Volodymyr Machula
32c5be8b73
community[minor]: Connery Tool and Toolkit (#14506)
## Summary

This PR implements the "Connery Action Tool" and "Connery Toolkit".
Using them, you can integrate Connery actions into your LangChain agents
and chains.

Connery is an open-source plugin infrastructure for AI.

With Connery, you can easily create a custom plugin with a set of
actions and seamlessly integrate them into your LangChain agents and
chains. Connery will handle the rest: runtime, authorization, secret
management, access management, audit logs, and other vital features.
Additionally, Connery and our community offer a wide range of
ready-to-use open-source plugins for your convenience.

Learn more about Connery:

- GitHub: https://github.com/connery-io/connery-platform
- Documentation: https://docs.connery.io
- Twitter: https://twitter.com/connery_io

## TODOs

- [x] API wrapper
   - [x] Integration tests
- [x] Connery Action Tool
   - [x] Docs
   - [x] Example
   - [x] Integration tests
- [x] Connery Toolkit
  - [x] Docs
  - [x] Example
- [x] Formatting (`make format`)
- [x] Linting (`make lint`)
- [x] Testing (`make test`)
2024-01-29 12:45:03 -08:00
Harrison Chase
8457c31c04
community[patch]: activeloop ai tql deprecation (#14634)
Co-authored-by: AdkSarsen <adilkhan@activeloop.ai>
2024-01-29 12:43:54 -08:00
Neli Hateva
c95facc293
langchain[minor], community[minor]: Implement Ontotext GraphDB QA Chain (#16019)
- **Description:** Implement Ontotext GraphDB QA Chain
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-01-29 12:25:53 -08:00
Jael Gu
a1aa3a657c
community[patch]: Milvus supports add & delete texts by ids (#16256)
# Description

To support [langchain
indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
as requested by users, vectorstore Milvus needs to support:
- document addition by id (`add_documents` method with `ids` argument)
- delete by id (`delete` method with `ids` argument)

Example usage:

```python
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain_community.vectorstores import Milvus
from langchain_openai import OpenAIEmbeddings

collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = Milvus(embedding_function=embedding, collection_name=collection_name)

namespace = f"milvus/{collection_name}"
record_manager = SQLRecordManager(
    namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()

doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})

index(
    [doc1, doc1, doc2],
    record_manager,
    vectorstore,
    cleanup="incremental",  # None, "incremental", or "full"
    source_id_key="source",
)
```

# Fix issues

Fix https://github.com/milvus-io/milvus/issues/30112

---------

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 11:19:50 -08:00
Benito Geordie
f3fdc5c5da
community: Added integrations for ThirdAI's NeuralDB with Retriever and VectorStore frameworks (#15280)
**Description:** Adds ThirdAI NeuralDB retriever and vectorstore
integration. NeuralDB is a CPU-friendly and fine-tunable text retrieval
engine.
2024-01-29 08:35:42 -08:00
Christophe Bornet
2e3af04080
Use Postponed Evaluation of Annotations in Astra and Cassandra doc loaders (#16694)
Minor/cosmetic change
2024-01-28 16:39:27 -08:00
Christophe Bornet
36e432672a
community[minor]: Add async methods to AstraDBLoader (#16652) 2024-01-27 17:05:41 -08:00
Christophe Bornet
4915c3cd86
[Fix] Fix Cassandra Document loader default page content mapper (#16273)
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
2024-01-27 11:23:02 -08:00
Micah Parker
6543e585a5
community[patch]: Added support for Ollama's num_predict option in ChatOllama (#16633)
Just a simple default addition to the options payload for a ollama
generate call to support a max_new_tokens parameter.

Should fix issue: https://github.com/langchain-ai/langchain/issues/14715
2024-01-26 15:00:19 -08:00
baichuan-assistant
70ff54eace
community[minor]: Add Baichuan Text Embedding Model and Baichuan Inc introduction (#16568)
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.

Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-26 12:57:26 -08:00
Ghani
e30c6662df
Langchain-community : EdenAI chat integration. (#16377)
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.

  - **Dependencies**: No dependencies are added as we call a rest API.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-26 09:56:43 -05:00
Bagatur
5df8ab574e
infra: move indexing documentation test (#16595) 2024-01-25 14:46:50 -08:00
Brian Burgin
148347e858
community[minor]: Add LiteLLM Router Integration (#15588)
community:

  - **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
    - Add tests and Jupyter notebook.
  - **Issue:** None
  - **Dependencies:** Relies on existing ChatLiteLLM integration
  - **Twitter handle:** @bburgin_0

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-25 11:03:05 -08:00
Rave Harpaz
c4e9c9ca29
community[minor]: Add OCI Generative AI integration (#16548)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
  - **Issue:** None,
  - **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
 
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 18:23:50 -08:00
Harel Gal
a91181fe6d
community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.

@baskaryan  @hwchase17

```python 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  guardrails={"id": " <guardrail_id>",
                              "version": "<guardrail_version>",
                               "trace": True}, callbacks=[BedrockAsyncCallbackHandler()])

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    """Async callback handler that can be used to handle callbacks from langchain."""

    async def on_llm_error(
            self,
            error: BaseException,
            **kwargs: Any,
    ) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
           # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
            print(f"""Guardrails: {kwargs}""")


# streaming 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  streaming=True,
                  guardrails={"id": "<guardrail_id>",
                              "version": "<guardrail_version>"})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:44:19 -08:00
Martin Kolb
04651f0248
community[minor]: VectorStore integration for SAP HANA Cloud Vector Engine (#16514)
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).

  - **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
  - **Twitter handle:** @sapopensource

Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`

Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`

Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`

Access credentials for execution of the integration tests can be
provided to the maintainers.

---------

Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:05:07 -08:00
Raunak
476bf8b763
community[patch]: Load list of files using UnstructuredFileLoader (#16216)
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
  
  - **Issue:** Fixed #15607,
  - **Dependencies:** NA
  - **Twitter handle:** NA

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-23 19:37:37 -08:00
Xudong Sun
019b6ebe8d
community[minor]: Add iFlyTek Spark LLM chat model support (#13389)
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
  - **Dependencies:** websocket-client ^1.6.1
  - **Tag maintainer:** @baskaryan 

### SparkLLM chat model usage

Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:

```python3
from langchain.chat_models.sparkllm import ChatSparkLLM

client = ChatSparkLLM(
    spark_app_id="<app_id>",
    spark_api_key="<api_key>",
    spark_api_secret="<api_secret>"
)
```
2024-01-23 19:23:46 -08:00
bu2kx
ff3163297b
community[minor]: Add KDBAI vector store (#12797)
Addition of KDBAI vector store (https://kdb.ai).

Dependencies: `kdbai_client` v0.1.2 Python package.

Sample notebook: `docs/docs/integrations/vectorstores/kdbai.ipynb`

Tag maintainer: @bu2kx
Twitter handle: @kxsystems
2024-01-23 18:37:01 -08:00
Shivani Modi
4e160540ff
community[minor]: Adding Konko Completion endpoint (#15570)
This PR introduces update to Konko Integration with LangChain.

1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.

2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.

4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.

Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.

---------

Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
2024-01-23 18:22:32 -08:00
Facundo Santiago
92e6a641fd
feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)
- **Description:** Introducing support for LLMs and Chat models running
in Azure AI studio and Azure ML using the new deployment mode
pay-as-you-go (model as a service).
- **Issue:** NA
- **Dependencies:** None.
- **Tag maintainer:** @prakharg-msft @gdyre 
- **Twitter handle:** @santiagofacundo

Examples added:
*
[docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb)
*
[docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 17:08:51 -08:00
baichuan-assistant
20fcd49348
community: Fix Baichuan Chat. (#15207)
- **Description:** Baichuan Chat (with both Baichuan-Turbo and
Baichuan-Turbo-192K models) has updated their APIs. There are breaking
changes. For example, BAICHUAN_SECRET_KEY is removed in the latest API
but is still required in Langchain. Baichuan's Langchain integration
needs to be updated to the latest version.
  - **Issue:** #15206
  - **Dependencies:** None,
  - **Twitter handle:** None

@hwchase17.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-23 17:01:57 -08:00
gcheron
cfc225ecb3
community: SQLStrStore/SQLDocStore provide an easy SQL alternative to InMemoryStore to persist data remotely in a SQL storage (#15909)
**Description:**

- Implement `SQLStrStore` and `SQLDocStore` classes that inherits from
`BaseStore` to allow to persist data remotely on a SQL server.
- SQL is widely used and sometimes we do not want to install a caching
solution like Redis.
- Multiple issues/comments complain that there is no easy remote and
persistent solution that are not in memory (users want to replace
InMemoryStore), e.g.,
https://github.com/langchain-ai/langchain/issues/14267,
https://github.com/langchain-ai/langchain/issues/15633,
https://github.com/langchain-ai/langchain/issues/14643,
https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
- This is particularly painful when wanting to use
`ParentDocumentRetriever `
- This implementation is particularly useful when:
     * it's expensive to construct an InMemoryDocstore/dict
     * you want to retrieve documents from remote sources
     * you just want to reuse existing objects
- This implementation integrates well with PGVector, indeed, when using
PGVector, you already have a SQL instance running. `SQLDocStore` is a
convenient way of using this instance to store documents associated to
vectors. An integration example with ParentDocumentRetriever and
PGVector is provided in docs/docs/integrations/stores/sql.ipynb or
[here](https://github.com/gcheron/langchain/blob/sql-store/docs/docs/integrations/stores/sql.ipynb).
- It persists `str` and `Document` objects but can be easily extended.

 **Issue:**

Provide an easy SQL alternative to `InMemoryStore`.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 16:50:48 -08:00
Tomaz Bratanic
d0a8082188
Fix neo4j sanitize (#16439)
Fix the sanitization bug and add an integration test
2024-01-23 10:56:28 -05:00
Florian MOREL
4b7969efc5
community[minor]: New documents loader for visio files (with extension .vsdx) (#16171)
**Description** : New documents loader for visio files (with extension
.vsdx)

A [visio file](https://fr.wikipedia.org/wiki/Microsoft_Visio) (with
extension .vsdx) is associated with Microsoft Visio, a diagram creation
software. It stores information about the structure, layout, and
graphical elements of a diagram. This format facilitates the creation
and sharing of visualizations in areas such as business, engineering,
and computer science.

A Visio file can contain multiple pages. Some of them may serve as the
background for others, and this can occur across multiple layers. This
loader extracts the textual content from each page and its associated
pages, enabling the extraction of all visible text from each page,
similar to what an OCR algorithm would do.

**Dependencies** : xmltodict package
2024-01-22 22:07:03 -08:00
DL
b9e7f6f38a
community[minor]: Bedrock async methods (#12477)
Description: Added support for asynchronous streaming in the Bedrock
class and corresponding tests.

Primarily:
  async def aprepare_output_stream
    async def _aprepare_input_and_invoke_stream
    async def _astream
    async def _acall

I've ensured that the code adheres to the project's linting and
formatting standards by running make format, make lint, and make test.

Issue: #12054, #11589

Dependencies: None

Tag maintainer: @baskaryan 

Twitter handle: @dominic_lovric

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
2024-01-22 14:44:49 -08:00
parkererickson-tg
b26a22f307
community[minor]: add TigerGraph support (#16280)
**Description:** Add support for querying TigerGraph databases through
the InquiryAI service.
**Issue**: N/A
**Dependencies:** N/A
**Twitter handle:** @TigerGraphDB
2024-01-22 14:07:44 -08:00
Ian
b9f5104e6c
communty[minor]: Store Message History to TiDB Database (#16304)
This pull request integrates the TiDB database into LangChain for
storing message history, marking one of several steps towards a
comprehensive integration of TiDB with LangChain.


A simple usage
```python
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory

history = TiDBChatMessageHistory(
    connection_string="mysql+pymysql://<host>:<PASSWORD>@<host>:4000/<db>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true",
    session_id="code_gen",
    earliest_time=datetime.utcnow(),  # Optional to set earliest_time to load messages after this time point.
)

history.add_user_message("hi! How's feature going?")
history.add_ai_message("It's almot done")
```
2024-01-22 13:56:56 -08:00
Eli Lucherini
6b2a57161a
community[patch]: allow additional kwargs in MlflowEmbeddings for compatibility with Cohere API (#15242)
- **Description:** add support for kwargs in`MlflowEmbeddings`
`embed_document()` and `embed_query()` so that all the arguments
required by Cohere API (and others?) can be passed down to the server.
  - **Issue:** #15234 
- **Dependencies:** MLflow with MLflow Deployments (`pip install
mlflow[genai]`)

**Tests**
Now this code [adapted from the
docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example)
for the Cohere API works locally.

```python
"""
Setup
-----
export COHERE_API_KEY=...
mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml

Run
---
python /path/to/this/file.py
"""
embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
```

Output
```
[0.060455322, 0.028793335, -0.025848389]
[0.031707764, 0.021057129, -0.009361267]
```
2024-01-22 11:38:11 -08:00
Guillem Orellana Trullols
aad2aa7188
community[patch]: BedrockChat -> Support Titan express as chat model (#15408)
Titan Express model was not supported as a chat model because LangChain
messages were not "translated" to a text prompt.

Co-authored-by: Guillem Orellana Trullols <guillem.orellana_trullols@siemens.com>
2024-01-22 11:37:23 -08:00
Katarina Supe
01c2f27ffa
community[patch]: Update Memgraph support (#16360)
- **Description:** I removed two queries to the database and left just
one whose results were formatted afterward into other type of schema
(avoided two calls to DB)
  - **Issue:** /
  - **Dependencies:** /
  - **Twitter handle:** @supe_katarina
2024-01-22 11:33:28 -08:00
Iskren Ivov Chernev
fc196cab12
community[minor]: DeepInfra support for chat models (#16380)
Add deepinfra chat models support.

This is https://github.com/langchain-ai/langchain/pull/14234 re-opened
from my branch (so maintainers can edit).
2024-01-22 11:22:17 -08:00
Max Jakob
de209af533
community[patch]: ElasticsearchStore: add relevance function selector (#16378)
Implement similarity function selector for ElasticsearchStore. The
scores coming back from Elasticsearch are already similarities (not
distances) and they are already normalized (see
[docs](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)).
Hence we leave the scores untouched and just forward them.

This fixes #11539.

However, in hybrid mode (when keyword search and vector search are
involved) Elasticsearch currently returns no scores. This PR adds an
error message around this fact. We need to think a bit more to come up
with a solution for this case.

This PR also corrects a small error in the Elasticsearch integration
test.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-22 11:52:20 -07:00
Bagatur
8779013847
community[patch]: Release 0.0.14 (#16384) 2024-01-22 08:50:19 -08:00
Luke
5396604ef4
community: Handling missing key in Google Trends API response. (#15864)
- **Description:** Handing response where _interest_over_time_ is
missing.
  - **Issue:** #15859
  - **Dependencies:** None
2024-01-21 18:11:45 -08:00
Virat Singh
c2a614eddc
community: Add PolygonLastQuote Tool and Toolkit (#15990)
**Description:** 
In this PR, I am adding a `PolygonLastQuote` Tool, which can be used to
get the latest price quote for a given ticker / stock.

Additionally, I've added a Polygon Toolkit, which we can use to
encapsulate future tools that we build for Polygon.

**Twitter handle:** [@virattt](https://twitter.com/virattt)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-21 15:08:55 -08:00
Carey
021b0484a8
community[patch]: add skipped test for inner product normalization (#14989)
---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-18 23:03:15 -08:00
Christophe Bornet
3ccbe11363
community[minor]: Add Cassandra document loader (#16215)
- **Description:** document loader for Apache Cassandra
  - **Twitter handle:** cbornet_
2024-01-18 18:49:02 -08:00
Christophe Bornet
3502a407d9
infra: Use dotenv in langchain-community's integration tests (#16137)
* Removed some env vars not used in langchain package IT
* Added Astra DB env vars in langchain package, used for cache tests
* Added conftest.py to load env vars in langchain_community IT
* Added .env.example in  langchain_community IT
2024-01-17 18:18:26 -08:00
Tomaz Bratanic
1e80113ac9
community[patch]: Add neo4j timeout and value sanitization option (#16138)
The timeout function comes in handy when you want to kill longrunning
queries.
The value sanitization removes all lists that are larger than 128
elements. The idea here is to remove embedding properties from results.
2024-01-17 13:22:19 -08:00