- **Description:**
Improve llamacpp embedding class by adding the `device` parameter so it
can be passed to the model and used with `gpu`, `cpu` or Apple metal
(`mps`).
Improve performance by making use of the bulk client api to compute
embeddings in batches.
- **Dependencies:** none
- **Tag maintainer:**
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
Starting from Neo4j 5.23 (22 August 2024), with vector-2.0 indexes,
`vector.dimensions` is not required to be set, which will cause it the
key not exist error in index config if it's not set.
Since the existence of vector.dimensions will only ensure additional
checks, this commit turns embedding dimension check optional, and only
do checks when it exists (not None).
https://neo4j.com/release-notes/database/neo4j-5/
**Twitter handle:** @HollowM186
Signed-off-by: Hollow Man <hollowman@opensuse.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- **AI Agent Built With LangChain and FireWorksAI**: "community
notebook"
- **Description:** Added a new AI agent in the cookbook folder that
integrates prompt compression using LLMLingua and arXiv retrieval tools.
The agent is designed to optimize the efficiency and performance of
research tasks by compressing lengthy prompts and retrieving relevant
academic papers. The agent also makes uses of MongoDB to store
conversational history and as it's knowledge base using MongoDB vector
store
- **Twitter handle:** https://x.com/richmondalake
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Added `ref` query parameter so data is not loaded
only from the default branch but any branch passed
---------
Co-authored-by: Osama Mehdi <mehdi@hm.edu>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
## Description
- Updates the self-query retriever factory to check for the new Qdrant
vector store class. i.e. `langchain_qdrant.QdrantVectorstore`.
- Deprecates `QdrantSparseVectorRetriever`, since the vector store
implementation natively supports it now.
Resolves#25798
- **Description:** When useing LLM integration moonshot,it's occurring
error "'Moonshot' object has no attribute '_client'",it's because of the
"_client" that is private in pydantic v1.0 so that we can't use it.I
turn "_client" into "client" , the error to be resolved!
- **Issue:** the issue #24390
- **Dependencies:** none
- **Twitter handle:** @Rainsubtime
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Cyue <Cyue_work2001@163.com>
- **Description:** if you use callback handlers when using tool,
run_manager will be added to input, so you need to explicitly specify
args_schema, but i was confused because it was not listed, so i added
it. Also, it seems that the type does not work with pydantic.BaseModel.
- **Issue:** None
- **Dependencies:** None
- [x] **PR title - community: add neo4j query constructor for self
query**
- [x] **PR message**
- **Description:** adding a Neo4jTranslator so that the Neo4j vector
database can use SelfQueryRetriever
- **Issue:** this issue had been raised before in #19748
- **Dependencies:** none.
- **Twitter handle:** @moyi_dang
- p.s. I have not added the query constructor in BUILTIN_TRANSLATORS in
this PR, I want to make changes to only one package at a time.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
# Description
Milvus (and `pymilvus`) recently added the option to use [sparse
vectors](https://milvus.io/docs/sparse_vector.md#Sparse-Vector) with
appropriate search methods (e.g., `SPARSE_INVERTED_INDEX`) and
embeddings (e.g., `BM25`, `SPLADE`).
This PR allow creating a vector store using langchain's `Milvus` class,
setting the matching vector field type to `DataType.SPARSE_FLOAT_VECTOR`
and the default index type to `SPARSE_INVERTED_INDEX`.
It is only extending functionality, and backward compatible.
## Note
I also interested in extending the Milvus class further to support multi
vector search (aka hybrid search). Will be happy to discuss that. See
[here](https://github.com/langchain-ai/langchain/discussions/19955),
[here](https://github.com/langchain-ai/langchain/pull/20375), and
[here](https://github.com/langchain-ai/langchain/discussions/22886)
similar needs.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Added: arxiv references to the concepts page.
Regenerated: arxiv references page.
Improved: formatting of the concepts page (moved the Partner packages
section after langchain_community)
- **Description:** OpenAI recently introduced a "strict" parameter for
[structured outputs in their
API](https://openai.com/index/introducing-structured-outputs-in-the-api/).
An optional `strict` parameter has been added to
`create_openai_functions_agent()` and `create_openai_tools_agent()` so
developers can use this feature in those agents.
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [ ] **PR title**: community: add tests for ChatOctoAI
- [ ] **PR message**:
Description: Added unit tests for the ChatOctoAI class in the community
package to ensure proper validation and default values. These tests
verify the correct initialization of fields, the handling of missing
required parameters, and the proper setting of aliases.
Issue: N/A
Dependencies: None
---------
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Thank you for contributing to LangChain!
community:premai[patch]: standardize init args
- updated `temperature` with Pydantic Field, updated the unit test.
- updated `max_tokens` with Pydantic Field, updated the unit test.
- updated `max_retries` with Pydantic Field, updated the unit test.
Related to #20085
---------
Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Description: Moves yield to after callback for _astream for gigachat in
the community package
Issue: #16913
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- [x] **PR title**: "community: Patch enable to use Amazon OpenSearch
Serverless for Semantic Cache store"
- [x] **PR message**:
- **Description:** OpenSearchSemanticCache class support Amazon
OpenSearch Serverless for Semantic Cache store, it's only required to
pass auth(http_auth) parameter to initializer
- **Dependencies:** none
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Jinoos Lee <jinoos@amazon.com>
it fixes two issues:
### YGPTs are broken #25575
```
File ....conda/lib/python3.11/site-packages/langchain_community/embeddings/yandex.py:211, in _make_request(self, texts, **kwargs)
..
--> 211 res = stub.TextEmbedding(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
AttributeError: 'YandexGPTEmbeddings' object has no attribute '_grpc_metadata'
```
My gut feeling that #23841 is the cause.
I have to drop leading underscore from `_grpc_metadata` for quickfix,
but I just don't know how to do it _pydantic_ enough.
### minor issue:
if we use `api_key`, which is not the best practice the code fails with
```
File ~/git/...../python3.11/site-packages/langchain_community/embeddings/yandex.py:119, in YandexGPTEmbeddings.validate_environment(cls, values)
...
AttributeError: 'tuple' object has no attribute 'append'
```
- Added new integration test. But it requires YGPT env available and
active account. I don't know how int tests dis\enabled in CI.
- added small unit tests with mocks. Should be fine.
---------
Co-authored-by: mikhail-khludnev <mikhail_khludnev@rntgroup.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
Support passing extra params when executing UC functions:
The params should be a dictionary with key EXECUTE_FUNCTION_ARG_NAME,
the assumption is that the function itself doesn't use such variable
name (starting and ending with double underscores), and if it does we
raise Exception.
If invalid params passing to the execute_statement, we raise Exception
as well.
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Signed-off-by: Serena Ruan <serena.rxy@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "community: optimize xinference llm import"
- [ ] **PR message**:
- **Description:** from xinferece_client import RESTfulClient when there
is no importing xinference.
- **Dependencies:** xinferece_client
- **Why do so:** the total xinference(pip install xinference[all]) is
too heavy for installing, let alone it is useless for langchain user
except RESTfulClient. The modification has maintained consistency with
the xinference embeddings
[embeddings/xinference](../blob/master/libs/community/langchain_community/embeddings/xinference.py#L89).
[This
commit](d3ca2cc8c3)
has broken the moderation chain so we've faced a crash when migrating
the LangChain from v0.1 to v0.2.
The issue appears that the class attribute the code refers to doesn't
hold the value processed in the `validate_environment` method. We had
`extras={}` in this attribute, and it was casted to `True` when it
should've been `False`. Adding a simple assignment seems to resolve the
issue, though I'm not sure it's the right way.
---
---------
Co-authored-by: Michael Rubél <mrubel@oroinc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: docs: fixed syntax error in ChatAnthropic Example -
rag app tutorial notebook - generation
- [ ] **PR message**:
- **Description:** Fixed a syntax error in the ChatAnthropic
initialization example in the RAG tutorial notebook. The original code
had an extra set of quotation marks around the model parameter, which
would cause a Python syntax error. The corrected version removes these
unnecessary quotes.
- **Dependencies:** No new dependencies required for this documentation
fix.
I've verified that the corrected code is syntactically valid and matches
the expected format for initializing a ChatAnthropic instance in
LangChain.
- **Twitter handle:** madhu_shantan
- [ ] **Add tests and docs**: the error in Jupyter notebook:
<img width="1189" alt="Screenshot 2024-08-29 at 12 43 47 AM"
src="https://github.com/user-attachments/assets/07148a93-300f-40e2-ad4a-ac219cbb56a4">
the corrected cell:
<img width="983" alt="Screenshot 2024-08-29 at 12 44 18 AM"
src="https://github.com/user-attachments/assets/75b1455a-3671-454e-ac16-8ca77c049dbd">
- [ ] **Lint and test**: As this is a documentation-only change, I have
not run the full test suite. However, I have verified that the corrected
code example is syntactically valid and matches the expected usage of
the ChatAnthropic class.
the error in the docs is here -
<img width="1020" alt="Screenshot 2024-08-29 at 12 48 36 AM"
src="https://github.com/user-attachments/assets/812ccb20-b411-4a5b-afc1-41742efb32a7">