Commit Graph

275 Commits

Author SHA1 Message Date
Erick Friis
a24a9c6427
multiple: get rid of pyproject extras (#22581)
They cause `poetry lock` to take a ton of time, and `uv pip install` can
resolve the constraints from these toml files in trivial time
(addressing problem with #19153)

This allows us to properly upgrade lockfile dependencies moving forward,
which revealed some issues that were either fixed or type-ignored (see
file comments)
2024-06-06 15:45:22 -07:00
Mohammad Mohtashim
7fcef2556c
[Experimental]: Async agenerate method ollama functions (#21682)
- **Description:** :
Added Async method for Generate for OllamaFunctions which was missing
and was raising errors for the users.
   
- **Issue:** 
#21422
2024-06-05 11:50:36 -04:00
Bagatur
48fba40fce
experimental[patch]: Release 0.0.60 (#22497) 2024-06-04 11:56:42 -07:00
liugz18
8fd231086e
experimental[patch]: Fix graph_transformers llms #21482 (#22417)
Fix AttributeError on calling
LLMGraphTransformer.convert_to_graph_documents #21482

 since raw_schema is always a str

@baskaryan
2024-06-04 17:07:38 +00:00
Karim Lalani
a1899439fc
[experimental][llms][ollama_functions] Update OllamaFunctions to send tool_calls attribute (#21625)
Update OllamaFunctions to return `tool_calls` for AIMessages when used
for tool calling.
2024-05-29 09:38:33 -04:00
Bagatur
50186da0a1
infra: rm unused # noqa violations (#22049)
Updating #21137
2024-05-22 15:21:08 -07:00
mochi
63284ffebf
experimental[patch], docs: refine notebook for MyScale SelfQueryRetriever (#22016)
- **Description:** upgrade model to `gpt-4o`
2024-05-22 21:49:01 +00:00
Tomaz Bratanic
a43515ca65
experimental[patch]: Pass enum only to openai in llm graph transformer (#21860)
Some models like Groq return bad request if you pass in `enum` parameter
in tool definition
2024-05-20 15:02:48 -07:00
Erick Friis
2d3f4e1a16
experimental: release 0.0.59 (#21835) 2024-05-17 21:02:45 +00:00
Erick Friis
c77d2f2b06
multiple: core 0.2 nonbreaking dep, check_diff community->langchain dep (#21646)
0.2 is not a breaking release for core (but it is for langchain and
community)

To keep the core+langchain+community packages in sync at 0.2, we will
relax deps throughout the ecosystem to tolerate `langchain-core` 0.2
2024-05-13 19:50:36 -07:00
Tomaz Bratanic
89ff6a3d3b
Add sentiment and confidence levels to diffbotgraphtransformer (#21590)
Co-authored-by: Erick Friis <erickfriis@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-13 23:00:52 +00:00
Erick Friis
83eecd54fe
experimental: 0.2 relax (#21468) 2024-05-08 21:39:42 -07:00
Eugene Yurtsev
f92006de3c
multiple: langchain 0.2 in master (#21191)
0.2rc 

migrations

- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks

Other todo

- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-05-08 16:46:52 -04:00
Erick Friis
bbdf0f8801
experimental[patch]: core and langchain dep (#21402) 2024-05-07 21:39:34 -07:00
Erick Friis
e4aca0d052
experimental[patch]: release 0.0.58 (#21397) 2024-05-08 03:52:44 +00:00
Tomaz Bratanic
0bf7596839
Add simple node properties to llm graph transformer (#21369)
Add support for simple node properties in llm graph transformer.

Linter and dynamic pydantic classes aren't friends, hence I added two
ignores
2024-05-07 08:41:09 -07:00
Tomaz Bratanic
ad3fd44a7f
experimental: Fix llm graph transformer bug (#21362) 2024-05-06 23:59:55 -07:00
Tomaz Bratanic
5b6d1a907d
Add the extract types to diffbot graph transformer (#21315)
Before you could only extract triples (diffbot calls it facts) from
diffbot to avoid isolated nodes. However, sometimes isolated nodes can
still be useful like for prefiltering, so we want to allow users to
extract them if they want. Default behaviour is unchanged.
2024-05-06 09:19:52 -04:00
ccurme
6da3d92b42
(all): update removal in deprecation warnings from 0.2 to 0.3 (#21265)
We are pushing out the removal of these to 0.3.

`find . -type f -name "*.py" -exec sed -i ''
's/removal="0\.2/removal="0.3/g' {} +`
2024-05-03 14:29:36 -04:00
Liu Xiaodong
3b473d10f2
experimental: clean python repl input(experimental:Added code for PythonREPL) (#20930)
Update python.py(experimental:Added code for PythonREPL)

Added code for PythonREPL, defining a static method 'sanitize_input'
that takes the string 'query' as input and returns a sanitizing string.
The purpose of this method is to remove unwanted characters from the
input string, Specifically:

1. Delete the whitespace at the beginning and end of the string (' \s').
2. Remove the quotation marks (`` ` ``) at the beginning and end of the
string.
3. Remove the keyword "python" at the beginning of the string (case
insensitive) because the user may have typed it.

This method uses regular expressions (regex) to implement sanitizing.

It all started with this code:
from langchain.agents import Tool
from langchain_experimental.utilities import PythonREPL

python_repl = PythonREPL()
repl_tool = Tool(
    name="python_repl",
description="Remove redundant formatting marks at the beginning and end
of source code from input.Use a Python shell to execute python commands.
If you want to see the output of a value, you should print it out with
`print(...)`.",
    func=python_repl.run,
)

When I call the agent to write a piece of code for me and execute it
with the defined code, I must get an error: SyntaxError('invalid
syntax', ('<string>', 1, 1,'In', 1, 2))

After checking, I found that pythonREPL has less formatting of input
code than the soon-to-be deprecated pythonREPL tool, so I added this
step to it, so that no matter what code I ask the agent to write for me,
it can be executed smoothly and get the output result.
I have tried modifying the prompt words to solve this problem before,
but it did not work, and by adding a simple format check, the problem is
well resolved.
<img width="1271" alt="image"
src="https://github.com/langchain-ai/langchain/assets/164149097/c49a685f-d246-4b11-b655-fd952fc2f04c">

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-05-01 05:19:09 +00:00
Tomaz Bratanic
7860e4c649
experimental[patch]: Add support for non-function calling LLMs in llm graph transformers (#21014) 2024-05-01 01:16:07 -04:00
Karim Lalani
2ddac9a7c3
experimental[minor]: Add bind_tools and with_structured_output functions to OllamaFunctions (#20881)
Implemented bind_tools for OllamaFunctions.
Made OllamaFunctions sub class of ChatOllama.
Implemented with_structured_output for OllamaFunctions.

integration unit test has been updated.
notebook has been updated.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-29 14:13:33 +00:00
Michael Schock
5e60d65917
experimental[patch]: return from HuggingGPT task executor task.run() exception (#20219)
**Description:** Fixes a bug in the HuggingGPT task execution logic
here:

      except Exception as e:
          self.status = "failed"
          self.message = str(e)
      self.status = "completed"
      self.save_product()

where a caught exception effectively just sets `self.message` and can
then throw an exception if, e.g., `self.product` is not defined.

**Issue:** None that I'm aware of.
**Dependencies:** None
**Twitter handle:** https://twitter.com/michaeljschock

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-04-25 20:16:39 +00:00
Michael Schock
63a07f52df
experimental[patch]: remove \n from AutoGPT feedback_tool exit check (#20132) 2024-04-25 20:10:33 +00:00
GustavoSept
c2d09a5186
experimental[patch]: Makes regex customizable in text_splitter.py (SemanticChunker class) (#20485)
- **Description:** Currently, the regex is static (`r"(?<=[.?!])\s+"`),
which is only useful for certain use cases. The current change only
moves this to be a parameter of split_text(). Which adds flexibility
without making it more complex (as the default regex is still the same).
- **Issue:** Not applicable (I searched, no one seems to have created
this issue yet).
  - **Dependencies:** None.


_If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17._

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-04-25 00:32:40 +00:00
Oleksandr Yaremchuk
9428923bab
experimental[minor]: upgrade the prompt injection model (#20783)
- **Description:** In January, Laiyer.ai became part of ProtectAI, which
means the model became owned by ProtectAI. In addition to that,
yesterday, we released a new version of the model addressing issues the
Langchain's community and others mentioned to us about false-positives.
The new model has a better accuracy compared to the previous version,
and we thought the Langchain community would benefit from using the
[latest version of the
model](https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2).
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** @alex_yaremchuk
2024-04-23 10:23:39 -04:00
ccurme
c010ec8b71
patch: deprecate (a)get_relevant_documents (#20477)
- `.get_relevant_documents(query)` -> `.invoke(query)`
- `.get_relevant_documents(query=query)` -> `.invoke(query)`
- `.get_relevant_documents(query, callbacks=callbacks)` ->
`.invoke(query, config={"callbacks": callbacks})`
- `.get_relevant_documents(query, **kwargs)` -> `.invoke(query,
**kwargs)`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-22 11:14:53 -04:00
Bagatur
1c7b3c75a7
community[patch], experimental[patch]: support tool-calling sql and p… (#20639)
d agents
2024-04-21 15:43:09 -07:00
Leonid Ganeline
95dc90609e
experimental[patch]: prompts import fix (#20534)
Replaced `from langchain.prompts` with `from langchain_core.prompts`
where it is appropriate.
Most of the changes go to `langchain_experimental`
Similar to #20348
2024-04-18 16:09:11 -04:00
ccurme
38faa74c23
community[patch]: update use of deprecated llm methods (#20393)
.predict and .predict_messages for BaseLanguageModel and BaseChatModel
2024-04-12 17:28:23 -04:00
Leonid Ganeline
e512d3c6a6
langchain: callbacks imports fix (#20348)
Replaced all `from langchain.callbacks` into `from
langchain_core.callbacks` .
Changes in the `langchain` and `langchain_experimental`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-12 20:13:14 +00:00
Tomaz Bratanic
a1b105ac00
experimental[patch]: Skip pydantic validation for llm graph transformer and fix JSON response where possible (#19915)
LLMs might sometimes return invalid response for LLM graph transformer.
Instead of failing due to pydantic validation, we skip it and manually
check and optionally fix error where we can, so that more information
gets extracted
2024-04-12 11:29:25 -07:00
Bagatur
2d83505be9
experimental[patch]: Release 0.0.57 (#20243) 2024-04-09 17:08:01 -05:00
Erick Friis
f0d5b59962
core[patch]: remove requests (#19891)
Removes required usage of `requests` from `langchain-core`, all of which
has been deprecated.

- removes Tracer V1 implementations
- removes old `try_load_from_hub` github-based hub implementations

Removal done in a way where imports will still succeed, and usage will
fail with a `RuntimeError`.
2024-04-02 20:28:10 +00:00
Bagatur
003c98e5b4
experimental[patch]: Release 0.0.56 (#19840) 2024-03-31 22:00:59 -07:00
LunarECL
b7d180a70d
experimental[minor]: Create Closed Captioning Chain for .mp4 videos (#14059)
Description: Video imagery to text (Closed Captioning)
This pull request introduces the VideoCaptioningChain, a tool for
automated video captioning. It processes audio and video to generate
subtitles and closed captions, merging them into a single SRT output.

Issue: https://github.com/langchain-ai/langchain/issues/11770
Dependencies: opencv-python, ffmpeg-python, assemblyai, transformers,
pillow, torch, openai
Tag maintainer:
@baskaryan
@hwchase17


Hello!

We are a group of students from the University of Toronto
(@LunarECL, @TomSadan, @nicoledroi1, @A2113S) that want to make a
contribution to the LangChain community! We have ran make format, make
lint and make test locally before submitting the PR. To our knowledge,
our changes do not introduce any new errors.

Thank you for taking the time to review our PR!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 01:57:53 +00:00
Kirushikesh DB
12861273e1
experimental[patch]: Removed 'SQLResults:' from the LLMResponse in SQLDatabaseChain (#17104)
**Description:** 
When using the SQLDatabaseChain with Llama2-70b LLM and, SQLite
database. I was getting `Warning: You can only execute one statement at
a time.`.

```
from langchain.sql_database import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain

sql_database_path = '/dccstor/mmdataretrieval/mm_dataset/swimming_record/rag_data/swimmingdataset.db'
sql_db = get_database(sql_database_path)
db_chain = SQLDatabaseChain.from_llm(mistral, sql_db, verbose=True, callbacks = [callback_obj])
db_chain.invoke({
    "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
})
```
Error:
```
Warning                                   Traceback (most recent call last)
Cell In[31], line 3
      1 import langchain
      2 langchain.debug=False
----> 3 db_chain.invoke({
      4     "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
      5 })

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:162, in Chain.invoke(self, input, config, **kwargs)
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)
--> 162     raise e
    163 run_manager.on_chain_end(outputs)
    164 final_outputs: Dict[str, Any] = self.prep_outputs(
    165     inputs, outputs, return_only_outputs
    166 )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:156, in Chain.invoke(self, input, config, **kwargs)
    149 run_manager = callback_manager.on_chain_start(
    150     dumpd(self),
    151     inputs,
    152     name=run_name,
    153 )
    154 try:
    155     outputs = (
--> 156         self._call(inputs, run_manager=run_manager)
    157         if new_arg_supported
    158         else self._call(inputs)
    159     )
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:198, in SQLDatabaseChain._call(self, inputs, run_manager)
    194 except Exception as exc:
    195     # Append intermediate steps to exception, to aid in logging and later
    196     # improvement of few shot prompt seeds
    197     exc.intermediate_steps = intermediate_steps  # type: ignore
--> 198     raise exc

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:143, in SQLDatabaseChain._call(self, inputs, run_manager)
    139     intermediate_steps.append(
    140         sql_cmd
    141     )  # output: sql generation (no checker)
    142     intermediate_steps.append({"sql_cmd": sql_cmd})  # input: sql exec
--> 143     result = self.database.run(sql_cmd)
    144     intermediate_steps.append(str(result))  # output: sql exec
    145 else:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:436, in SQLDatabase.run(self, command, fetch, include_columns)
    425 def run(
    426     self,
    427     command: str,
    428     fetch: Literal["all", "one"] = "all",
    429     include_columns: bool = False,
    430 ) -> str:
    431     """Execute a SQL command and return a string representing the results.
    432 
    433     If the statement returns rows, a string of the results is returned.
    434     If the statement returns no rows, an empty string is returned.
    435     """
--> 436     result = self._execute(command, fetch)
    438     res = [
    439         {
    440             column: truncate_word(value, length=self._max_string_length)
   (...)
    443         for r in result
    444     ]
    446     if not include_columns:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:413, in SQLDatabase._execute(self, command, fetch)
    410     elif self.dialect == "postgresql":  # postgresql
    411         connection.exec_driver_sql("SET search_path TO %s", (self._schema,))
--> 413 cursor = connection.execute(text(command))
    414 if cursor.returns_rows:
    415     if fetch == "all":

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1416, in Connection.execute(self, statement, parameters, execution_options)
   1414     raise exc.ObjectNotExecutableError(statement) from err
   1415 else:
-> 1416     return meth(
   1417         self,
   1418         distilled_parameters,
   1419         execution_options or NO_OPTIONS,
   1420     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/sql/elements.py:516, in ClauseElement._execute_on_connection(self, connection, distilled_params, execution_options)
    514     if TYPE_CHECKING:
    515         assert isinstance(self, Executable)
--> 516     return connection._execute_clauseelement(
    517         self, distilled_params, execution_options
    518     )
    519 else:
    520     raise exc.ObjectNotExecutableError(self)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1639, in Connection._execute_clauseelement(self, elem, distilled_parameters, execution_options)
   1627 compiled_cache: Optional[CompiledCacheType] = execution_options.get(
   1628     "compiled_cache", self.engine._compiled_cache
   1629 )
   1631 compiled_sql, extracted_params, cache_hit = elem._compile_w_cache(
   1632     dialect=dialect,
   1633     compiled_cache=compiled_cache,
   (...)
   1637     linting=self.dialect.compiler_linting | compiler.WARN_LINTING,
   1638 )
-> 1639 ret = self._execute_context(
   1640     dialect,
   1641     dialect.execution_ctx_cls._init_compiled,
   1642     compiled_sql,
   1643     distilled_parameters,
   1644     execution_options,
   1645     compiled_sql,
   1646     distilled_parameters,
   1647     elem,
   1648     extracted_params,
   1649     cache_hit=cache_hit,
   1650 )
   1651 if has_events:
   1652     self.dispatch.after_execute(
   1653         self,
   1654         elem,
   (...)
   1658         ret,
   1659     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1848, in Connection._execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)
   1843     return self._exec_insertmany_context(
   1844         dialect,
   1845         context,
   1846     )
   1847 else:
-> 1848     return self._exec_single_context(
   1849         dialect, context, statement, parameters
   1850     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1988, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1985     result = context._setup_result_proxy()
   1987 except BaseException as e:
-> 1988     self._handle_dbapi_exception(
   1989         e, str_statement, effective_parameters, cursor, context
   1990     )
   1992 return result

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:2346, in Connection._handle_dbapi_exception(self, e, statement, parameters, cursor, context, is_sub_exec)
   2344     else:
   2345         assert exc_info[1] is not None
-> 2346         raise exc_info[1].with_traceback(exc_info[2])
   2347 finally:
   2348     del self._reentrant_error

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1969, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1967                 break
   1968     if not evt_handled:
-> 1969         self.dialect.do_execute(
   1970             cursor, str_statement, effective_parameters, context
   1971         )
   1973 if self._has_events or self.engine._has_events:
   1974     self.dispatch.after_cursor_execute(
   1975         self,
   1976         cursor,
   (...)
   1980         context.executemany,
   1981     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/default.py:922, in DefaultDialect.do_execute(self, cursor, statement, parameters, context)
    921 def do_execute(self, cursor, statement, parameters, context=None):
--> 922     cursor.execute(statement, parameters)

Warning: You can only execute one statement at a time.
```
**Issue:** 
The Error occurs because when generating the SQLQuery, the llm_input
includes the stop character of "\nSQLResult:", so for this user query
the LLM generated response is **SELECT Time FROM men_butterfly_100m
WHERE Swimmer = 'Lance Larson';\nSQLResult:** it is required to remove
the SQLResult suffix on the llm response before executing it on the
database.

```
llm_inputs = {
            "input": input_text,
            "top_k": str(self.top_k),
            "dialect": self.database.dialect,
            "table_info": table_info,
            "stop": ["\nSQLResult:"],
        }

sql_cmd = self.llm_chain.predict(
                callbacks=_run_manager.get_child(),
                **llm_inputs,
            ).strip()

if SQL_RESULT in sql_cmd:
    sql_cmd = sql_cmd.split(SQL_RESULT)[0].strip()
result = self.database.run(sql_cmd)
```


<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 01:22:35 -07:00
T Cramer
540ebf35a9
community[patch]: Add explicit error message to Bedrock error output. (#17328)
- **Description:** Propagate Bedrock errors into Langchain explicitly.
Use-case: unset region error is hidden behind 'Could not load
credentials...' message
- **Issue:**
[17654](https://github.com/langchain-ai/langchain/issues/17654)
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 03:07:33 +00:00
Luca Dorigo
f19229c564
core[patch]: fix beta, deprecated typing (#18877)
**Description:** 

While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.

This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 22:33:43 +00:00
Tomaz Bratanic
b04e663426
experimental[patch]: Flatten relationships in LLM graph transformer (#19642) 2024-03-27 19:35:34 -07:00
Juan Jose Miguel Ovalle Villamil
1fe10a3e3d
experimental[patch]: Enhance LLMGraphTransformer with async processing and improved readability (#19205)
- [x] **PR title**: "experimental: Enhance LLMGraphTransformer with
async processing and improved readability"


- [x] **PR message**: 
- **Description:** This pull request refactors the `process_response`
and `convert_to_graph_documents` methods in the LLMGraphTransformer
class to improve code readability and adds async versions of these
methods for concurrent processing.
    The main changes include:
- Simplifying list comprehensions and conditional logic in the
process_response method for better readability.
- Adding async versions aprocess_response and
aconvert_to_graph_documents to enable concurrent processing of
documents.
These enhancements aim to improve the overall efficiency and
maintainability of the `LLMGraphTransformer` class.
  - **Issue:** N/A
  - **Dependencies:** No additional dependencies required.
  - **Twitter handle:** @jjovalle99


- [x] **Add tests and docs**: N/A (This PR does not introduce a new
integration)


- [x] **Lint and test**: Ran make format, make lint, and make test from
the root of the modified package(s). All tests pass successfully.

Additional notes:

- The changes made in this PR are backwards compatible and do not
introduce any breaking changes.
- The PR touches only the `LLMGraphTransformer` class within the
experimental package.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 23:40:21 -07:00
Leonid Ganeline
3dc0f3c371
experimental[patch]: PromptTemplate import fix (#19617)
Changed import of `PromptTemplate` from `langchain` to `langchain_core`
in `langchain_experimental`
2024-03-26 17:03:13 -07:00
Leonid Ganeline
4159a4723c
experimental[patch]: update module doc strings (#19539)
Added missed module descriptions. Fixed format.
2024-03-26 10:38:10 -04:00
Bagatur
3fa711dce0
experimental[patch]: Release 0.0.55 (#19353) 2024-03-20 13:06:39 -07:00
Zihong
ff31cc1648
experimental: update the notebook link of semantic chunk. (#19253)
update the notebook link of semantic chunk.
2024-03-19 07:24:51 -04:00
Cycle
77868b1974
experimental: add buffer_size hyperparameter to SemanticChunker as in source video (#19208)
add buffer_size hyperparameter which used in combine_sentences function
2024-03-19 03:54:20 +00:00
Erick Friis
781aee0068
community, langchain, infra: revert store extended test deps outside of poetry (#19153)
Reverts langchain-ai/langchain#18995

Because it makes installing dependencies in python 3.11 extended testing
take 80 minutes
2024-03-15 17:10:47 +00:00
Erick Friis
9e569d85a4
community, langchain, infra: store extended test deps outside of poetry (#18995)
poetry can't reliably handle resolving the number of optional "extended
test" dependencies we have. If we instead just rely on pip to install
extended test deps in CI, this isn't an issue.
2024-03-15 05:55:30 +00:00
Erick Friis
2ffb2144a6
experimental[patch]: release 0.0.54 (#19000) 2024-03-13 00:38:46 +00:00
Tomaz Bratanic
cda43c5a11
experimental[patch]: Fix LLM graph transformer default prompt (#18856)
Some LLMs do not allow multiple user messages in sequence.
2024-03-11 20:11:52 -07:00