Commit Graph

3828 Commits

Author SHA1 Message Date
Eugene Yurtsev
4c2de2a7f2
Adding missing types in some pydantic models (#9355)
* Adding missing types in some pydantic models -- this change is
required for making the code work with pydantic v2.
2023-08-16 20:10:34 -07:00
Harrison Chase
1c089cadd7
fix import v2 (#9346) 2023-08-16 17:33:01 -07:00
Angel Luis
2e8733cf54
Fix typo in huggingface_textgen_inference.ipynb (#9313)
Replaced incorrect `stream` parameter by `streaming` on Integrations
docs.
2023-08-16 16:22:21 -07:00
Lance Martin
b04e472acf
Open source LLM guide (#9266)
Guide for using open source LLMs locally.
2023-08-16 16:18:31 -07:00
Eugene Yurtsev
090411842e
Fix API reference docs (#9321)
Do not document members nested within any private component
2023-08-16 15:56:54 -07:00
qqjettkgjzhxmwj
84a97d55e1
Fix typo in llm_router.py (#9322)
Fix typo
2023-08-16 15:56:44 -07:00
Joe Reuter
09aa1eac03
Airbyte loaders: Fix last_state getter (#9314)
This PR fixes the Airbyte loaders when doing incremental syncs. The
notebooks are calling out to access `loader.last_state` to get the
current state of incremental syncs, but this didn't work due to a
refactoring of how the loaders are structured internally in the original
PR.

This PR fixes the issue by adding a `last_state` property that forwards
the state correctly from the CDK adapter.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-16 15:56:33 -07:00
Eugene Yurtsev
0f9f213833
Pydantic Compatibility (#9327)
Pydantic Compatibility Guidelines for migration plan + debugging
2023-08-16 15:55:53 -07:00
Chandler May
15f1af8ed6
Fix variable case in code snippet in docs (#9311)
- Description: Fix a minor variable naming inconsistency in a code
snippet in the docs
  - Issue: N/A
  - Dependencies: none
  - Tag maintainer: N/A
  - Twitter handle: N/A
2023-08-16 13:34:46 -07:00
Jakub Kuciński
8bebc9206f
Add improved sources splitting in BaseQAWithSourcesChain (#8716)
## Type:
Improvement

---

## Description:
Running QAWithSourcesChain sometimes raises ValueError as mentioned in
issue #7184:
```
ValueError: too many values to unpack (expected 2)
Traceback:

    response = qa({"question": pregunta}, return_only_outputs=True)
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 166, in __call__
    raise e
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\base.py", line 160, in __call__
    self._call(inputs, run_manager=run_manager)
File "C:\Anaconda3\envs\iagen_3_10\lib\site-packages\langchain\chains\qa_with_sources\base.py", line 132, in _call
    answer, sources = re.split(r"SOURCES:\s", answer)
```
This is due to LLM model generating subsequent question, answer and
sources, that is complement in a similar form as below:
```
<final_answer>
SOURCES: <sources>
QUESTION: <new_or_repeated_question>
FINAL ANSWER: <new_or_repeated_final_answer>
SOURCES: <new_or_repeated_sources>
```
It leads the following line
```
 re.split(r"SOURCES:\s", answer)
```
to return more than 2 elements and result in ValueError. The simple fix
is to split also with "QUESTION:\s" and take the first two elements:
```
answer, sources = re.split(r"SOURCES:\s|QUESTION:\s", answer)[:2]
```

Sometimes LLM might also generate some other texts, like alternative
answers in a form:
```
<final_answer_1>
SOURCES: <sources>

<final_answer_2>
SOURCES: <sources>

<final_answer_3>
SOURCES: <sources>
```
In such cases it is the best to split previously obtained sources with
new line:
```
sources = re.split(r"\n", sources.lstrip())[0]
```



---

## Issue:
Resolves #7184

---

## Maintainer:
@baskaryan
2023-08-16 13:30:15 -07:00
Bagatur
a3c79b1909
Add tiktoken integration dep (#9332) 2023-08-16 12:09:22 -07:00
Michael Bianco
23928a3311
docs: remove multiple code blocks from comma-separated docs (#9323) 2023-08-16 11:51:58 -07:00
Bagatur
ba5fbaba70
bump 266 (#9296) 2023-08-16 01:13:19 -07:00
Navanit Dubey
3e6cea46e2
Guide import readable json (#9291) 2023-08-16 00:49:01 -07:00
axiangcoding
63601551b1
fix(llms): improve the ernie chat model (#9289)
- Description: improve the ernie chat model.
   - fix missing kwargs to payload
   - new test cases
   - add some debug level log
   - improve description
- Issue: None
- Dependencies: None
- Tag maintainer: @baskaryan
2023-08-16 00:48:42 -07:00
Daniel Chalef
1d55141c50
zep/new ZepVectorStore (#9159)
- new ZepVectorStore class
- ZepVectorStore unit tests
- ZepVectorStore demo notebook
- update zep-python to ~1.0.2

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-16 00:23:07 -07:00
William FH
2519580994
Add Schema Evals (#9228)
Simple eval checks for whether a generation is valid json and whether it
matches an expected dict
2023-08-15 17:17:32 -07:00
Kenny
74a64cfbab
expose output key to create_openai_fn_chain (#9155)
I quick change to allow the output key of create_openai_fn_chain to
optionally be changed.

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 17:01:32 -07:00
Bagatur
b9ca5cc5ea
update guide import (#9279) 2023-08-15 17:01:06 -07:00
Bagatur
afba2be3dc
update openai functions docs (#9278) 2023-08-15 17:00:56 -07:00
Bagatur
9abf60acb6
Bagatur/vectara regression (#9276)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-08-15 16:19:46 -07:00
Xiaoyu Xee
b30f449dae
Add dashvector vectorstore (#9163)
## Description
Add `Dashvector` vectorstore for langchain

- [dashvector quick
start](https://help.aliyun.com/document_detail/2510223.html)
- [dashvector package description](https://pypi.org/project/dashvector/)

## How to use
```python
from langchain.vectorstores.dashvector import DashVector

dashvector = DashVector.from_documents(docs, embeddings)
```

---------

Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 16:19:30 -07:00
Bagatur
bfbb97b74c
Bagatur/deeplake docs fixes (#9275)
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
2023-08-15 15:56:36 -07:00
Kunj-2206
1b3942ba74
Added BittensorLLM (#9250)
Description: Adding NIBittensorLLM via Validator Endpoint to langchain
llms
Tag maintainer: @Kunj-2206

Maintainer responsibilities:
    Models / Prompts: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 15:40:52 -07:00
Toshish Jawale
852722ea45
Improvements in Nebula LLM (#9226)
- Description: Added improvements in Nebula LLM to perform auto-retry;
more generation parameters supported. Conversation is no longer required
to be passed in the LLM object. Examples are updated.
  - Issue: N/A
  - Dependencies: N/A
  - Tag maintainer: @baskaryan 
  - Twitter handle: symbldotai

---------

Co-authored-by: toshishjawale <toshish@symbl.ai>
2023-08-15 15:33:07 -07:00
Bagatur
358562769a
Bagatur/refac faiss (#9076)
Code cleanup and bug fix in deletion
2023-08-15 15:19:00 -07:00
Bagatur
3eccd72382
pin pydantic (#9274)
don't want default to be v2 yet
2023-08-15 15:02:28 -07:00
Erick Friis
76d09b4ed0
hub push/pull (#9225)
Description: Adds push/pull functions to interact with the hub
Issue: n/a
Dependencies: `langchainhub`

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 14:11:43 -07:00
Bagatur
1aae77f26f
fix context nb (#9267) 2023-08-15 12:53:37 -07:00
Alex Gamble
cf17c58b47
Update documentation for the Context integration with new URL and features (#9259)
Update documentation and URLs for the Langchain Context integration.

We've moved from getcontext.ai to context.ai \o/

Thanks in advance for the review!
2023-08-15 11:38:34 -07:00
Eugene Yurtsev
a091b4bf4c
Update testing workflow to test with both pydantic versions (#9206)
* PR updates test.yml to test with both pydantic versions
* Code should be refactored to make it easier to do testing in matrix
format w/ packages
* Added steps to assert that pydantic version in the environment is as
expected
2023-08-15 13:21:11 -04:00
Bagatur
e0162baa3b
add oai sched tests (#9257) 2023-08-15 09:40:33 -07:00
Joseph McElroy
5e9687a196
Elasticsearch self-query retriever (#9248)
Now with ElasticsearchStore VectorStore merged, i've added support for
the self-query retriever.

I've added a notebook also to demonstrate capability. I've also added
unit tests.

**Credit**
@elastic and @phoey1 on twitter.
2023-08-15 10:53:43 -04:00
Anthony Mahanna
0a04e63811
docs: Update ArangoDB Links (#9251)
ready for review 

- mdx link update
- colab link update
2023-08-15 07:43:47 -07:00
Eugene Yurtsev
0470198fb5
Remove packages for pydantic compatibility (#9217)
# Poetry updates

This PR updates LangChains poetry file to remove
any dependencies that aren't pydantic v2 compatible yet.

All packages remain usable under pydantic v1, and can be installed
separately. 

## Bumping the following packages:

* langsmith

## Removing the following packages

not used in extended unit-tests:

* zep-python, anthropic, jina, spacy, steamship, betabageldb

not used at all:

* octoai-sdk

Cleaning up extras w/ for removed packages.

## Snapshots updated

Some snapshots had to be updated due to a change in the data model in
langsmith. RunType used to be Union of Enum and string and was changed
to be string only.
2023-08-15 10:41:25 -04:00
Bagatur
e986afa13a
bump 265 (#9253) 2023-08-15 07:21:32 -07:00
Hech
4b505060bd
fix: max_marginal_relevance_search and docs in Dingo (#9244) 2023-08-15 01:06:06 -07:00
axiangcoding
664ff28cba
feat(llms): support ernie chat (#9114)
Description: support ernie (文心一言) chat model
Related issue: #7990
Dependencies: None
Tag maintainer: @baskaryan
2023-08-15 01:05:46 -07:00
Bharat Ramanathan
08a8363fc6
feat(integration): Add support to serialize protobufs in WandbTracer (#8914)
This PR adds serialization support for protocol bufferes in
`WandbTracer`. This allows code generation chains to be visualized.
Additionally, it also fixes a minor bug where the settings are not
honored when a run is initialized before using the `WandbTracer`

@agola11

---------

Co-authored-by: Bharat Ramanathan <ramanathan.parameshwaran@gohuddl.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 01:05:12 -07:00
fanyou-wbd
5e43768f61
docs: update LlamaCpp max_tokens args (#9238)
This PR updates documentations only, `max_length` should be `max_tokens`
according to latest LlamaCpp API doc:
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
2023-08-15 00:50:20 -07:00
Bagatur
a8aa1aba1c
nit (#9243) 2023-08-15 00:49:12 -07:00
Bagatur
68d8f73698
consolidate redirects (#9242) 2023-08-15 00:48:23 -07:00
Joshua Sundance Bailey
ef0664728e
ArcGISLoader update (#9240)
Small bug fixes and added metadata based on user feedback. This PR is
from the author of https://github.com/langchain-ai/langchain/pull/8873 .
2023-08-14 23:44:29 -07:00
Joseph McElroy
eac4ddb4bb
Elasticsearch Store Improvements (#8636)
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support 
- [x] Metadata support
  - [x] Metadata Filter support 
- [x] Retrieval Strategies
  - [x] Approx
  - [x] Approx with Hybrid
  - [x] Exact
  - [x] Custom 
  - [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests 
- [x] Documentation

👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:

## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.

```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch

## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```

## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.

With `ElasticsearchStore` we have retrieval strategies:

### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index"
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.

This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(
                query_model_id="sentence-transformers__all-minilm-l6-v2"
            ),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`

```py
        def my_custom_query(query_body: dict, query: str) -> dict:
            return {"query": {"match": {"text": {"query": "bar"}}}}

        texts = ["foo", "bar", "baz"]
        docsearch = ElasticsearchStore.from_texts(
            texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
        )
        docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)

```

### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ExactRetrievalStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.

```py
texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.SparseVectorStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)

```

## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.

## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 23:42:35 -07:00
Harrison Chase
71d5b7c9bf
Harrison/fallbacks (#9233)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 18:27:38 -07:00
Lance Martin
41279a3ae1
Move self-check use case to "more" section (#9137)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 18:27:28 -07:00
Lance Martin
22858d99b5
Move code-writing use case to "more" section (#9134)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 18:27:19 -07:00
Bagatur
249d7d06a2
adapter doc nit (#9234) 2023-08-14 18:26:37 -07:00
Divyansh Garg
9529483c2a
Improve MultiOn client toolkit prompts (#9222)
- Updated prompts for the MultiOn toolkit for better functionality
- Non-blocking but good to have it merged to improve the overall
performance for the toolkit
 
@hinthornw @hwchase17

---------

Co-authored-by: Naman Garg <ngarg3@binghamton.edu>
2023-08-14 17:39:51 -07:00
Lance Martin
969e1683de
Move graph use case to "more" section (#8997)
Clean `use_cases` by moving the `GraphDB` to `integrations`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 17:20:38 -07:00