## Problem
Spent several hours trying to figure out how to pass
`RedisChatMessageHistory` as a `GetSessionHistoryCallable` with a
different REDIS hostname. This example kept connecting to
`redis://localhost:6379`, but I wanted to connect to a server not hosted
locally.
## Cause
Assumption the user knows how to implement `BaseChatMessageHistory` and
`GetSessionHistoryCallable`
## Solution
Update documentation to show how to explicitly set the REDIS hostname
using a lambda function much like the MongoDB and SQLite examples.
After merging [PR
#16304](https://github.com/langchain-ai/langchain/pull/16304), I
realized that our notebook example for integrating TiDB with LangChain
was too basic. To make it more useful and user-friendly, I plan to
create a detailed example. This will show how to use TiDB for saving
history messages in LangChain, offering a clearer, more practical guide
for our users
I also added LANGCHAIN_COMET_TRACING to enable the CometLLM tracing
integration similar to other tracing integrations. This is easier for
end-users to enable it rather than importing the callback and pass it
manually.
(This is the same content as
https://github.com/langchain-ai/langchain/pull/14650 but rebased and
squashed as something seems to confuse Github Action).
- **Description:** add milvus multitenancy doc, it is an example for
this [pr](https://github.com/langchain-ai/langchain/pull/15740) .
- **Issue:** No,
- **Dependencies:** No,
- **Twitter handle:** No
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
**Description:** Add support for querying TigerGraph databases through
the InquiryAI service.
**Issue**: N/A
**Dependencies:** N/A
**Twitter handle:** @TigerGraphDB
This pull request integrates the TiDB database into LangChain for
storing message history, marking one of several steps towards a
comprehensive integration of TiDB with LangChain.
A simple usage
```python
from datetime import datetime
from langchain_community.chat_message_histories import TiDBChatMessageHistory
history = TiDBChatMessageHistory(
connection_string="mysql+pymysql://<host>:<PASSWORD>@<host>:4000/<db>?ssl_ca=/etc/ssl/cert.pem&ssl_verify_cert=true&ssl_verify_identity=true",
session_id="code_gen",
earliest_time=datetime.utcnow(), # Optional to set earliest_time to load messages after this time point.
)
history.add_user_message("hi! How's feature going?")
history.add_ai_message("It's almot done")
```
The callbacks get started demo code was updated , replacing the
chain.run() command ( which is now depricated) ,with the updated
chain.invoke() command.
Solving the following issue : #16379
Twitter/X : @Hazxhx
- **Description:** Some code sources have been moved from `langchain` to
`langchain_community` and so the documentation is not yet up-to-date.
This is specifically true for `StreamlitCallbackHandler` which returns a
`warning` message if not loaded from `langchain_community`.,
- **Issue:** I don't see a # issue that could address this problem but
perhaps #10744,
- **Dependencies:** Since it's a documentation change no dependencies
are required
- **Description:** update documentation on jaguar vector store:
Instruction for setting up jaguar server and usage of text_tag.
- **Issue:**
- **Dependencies:**
- **Twitter handle:**
---------
Co-authored-by: JY <jyjy@jaguardb>
- **Description:** Updating documentation of IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM with using
`invoke` instead of `__call__`
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** :
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
The following warning information show when i use `run` and `__call__`
method:
```
LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
We need to update documentation for using `invoke` method
The following warning information will be displayed when i use
`llm(PROMPT)`:
```python
/Users/169/llama.cpp/venv/lib/python3.11/site-packages/langchain_core/_api/deprecation.py:117: LangChainDeprecationWarning: The function `__call__` was deprecated in LangChain 0.1.7 and will be removed in 0.2.0. Use invoke instead.
warn_deprecated(
```
So I changed to standard usage.
**Description:**
In this PR, I am adding a `PolygonLastQuote` Tool, which can be used to
get the latest price quote for a given ticker / stock.
Additionally, I've added a Polygon Toolkit, which we can use to
encapsulate future tools that we build for Polygon.
**Twitter handle:** [@virattt](https://twitter.com/virattt)
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adds a text splitter based on
[Konlpy](https://konlpy.org/en/latest/#start) which is a Python package
for natural language processing (NLP) of the Korean language. (It is
like Spacy or NLTK for Korean)
- **Dependencies:** Konlpy would have to be installed before this
splitter is used,
- **Twitter handle:** @untilhamza
This PR adds `astream_events` method to Runnables to make it easier to
stream data from arbitrary chains.
* Streaming only works properly in async right now
* One should use `astream()` with if mixing in imperative code as might
be done with tool implementations
* Astream_log has been modified with minimal additive changes, so no
breaking changes are expected
* Underlying callback code / tracing code should be refactored at some
point to handle things more consistently (OK for now)
- ~~[ ] verify event for on_retry~~ does not work until we implement
streaming for retry
- ~~[ ] Any rrenaming? Should we rename "event" to "hook"?~~
- [ ] Any other feedback from community?
- [x] throw NotImplementedError for `RunnableEach` for now
## Example
See this [Example
Notebook](dbbc7fa0d6/docs/docs/modules/agents/how_to/streaming_events.ipynb)
for an example with streaming in the context of an Agent
## Event Hooks Reference
Here is a reference table that shows some events that might be emitted
by the various Runnable objects.
Definitions for some of the Runnable are included after the table.
| event | name | chunk | input | output |
|----------------------|------------------|---------------------------------|-----------------------------------------------|-------------------------------------------------|
| on_chat_model_start | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | |
| on_chat_model_stream | [model name] | AIMessageChunk(content="hello")
| | |
| on_chat_model_end | [model name] | | {"messages": [[SystemMessage,
HumanMessage]]} | {"generations": [...], "llm_output": None, ...} |
| on_llm_start | [model name] | | {'input': 'hello'} | |
| on_llm_stream | [model name] | 'Hello' | | |
| on_llm_end | [model name] | | 'Hello human!' |
| on_chain_start | format_docs | | | |
| on_chain_stream | format_docs | "hello world!, goodbye world!" | | |
| on_chain_end | format_docs | | [Document(...)] | "hello world!,
goodbye world!" |
| on_tool_start | some_tool | | {"x": 1, "y": "2"} | |
| on_tool_stream | some_tool | {"x": 1, "y": "2"} | | |
| on_tool_end | some_tool | | | {"x": 1, "y": "2"} |
| on_retriever_start | [retriever name] | | {"query": "hello"} | |
| on_retriever_chunk | [retriever name] | {documents: [...]} | | |
| on_retriever_end | [retriever name] | | {"query": "hello"} |
{documents: [...]} |
| on_prompt_start | [template_name] | | {"question": "hello"} | |
| on_prompt_end | [template_name] | | {"question": "hello"} |
ChatPromptValue(messages: [SystemMessage, ...]) |
Here are declarations associated with the events shown above:
`format_docs`:
```python
def format_docs(docs: List[Document]) -> str:
'''Format the docs.'''
return ", ".join([doc.page_content for doc in docs])
format_docs = RunnableLambda(format_docs)
```
`some_tool`:
```python
@tool
def some_tool(x: int, y: str) -> dict:
'''Some_tool.'''
return {"x": x, "y": y}
```
`prompt`:
```python
template = ChatPromptTemplate.from_messages(
[("system", "You are Cat Agent 007"), ("human", "{question}")]
).with_config({"run_name": "my_template", "tags": ["my_template"]})
```
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** In Google Vertex AI, Gemini Chat models currently
doesn't have a support for SystemMessage. This PR adds support for it
only if a user provides additional convert_system_message_to_human flag
during model initialization (in this case, SystemMessage would be
prepended to the first HumanMessage). **NOTE:** The implementation is
similar to #14824
- **Twitter handle:** rajesh_thallam
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description**: Updated doc for llm/google_vertex_ai_palm with new
functions: `invoke`, `stream`... Changed structure of the document to
match the required one.
- **Issue**: #15664
- **Dependencies**: None
- **Twitter handle**: None
---------
Co-authored-by: Jorge Zaldívar <jzaldivar@google.com>
**Description:** Gemini model has quite annoying default safety_settings
settings. In addition, current VertexAI class doesn't provide a property
to override such settings.
So, this PR aims to
- add safety_settings property to VertexAI
- fix issue with incorrect LLM output parsing when LLM responds with
appropriate 'blocked' response
- fix issue with incorrect parsing LLM output when Gemini API blocks
prompt itself as inappropriate
- add safety_settings related tests
I'm not enough familiar with langchain code base and guidelines. So, any
comments and/or suggestions are very welcome.
**Issue:** it will likely fix#14841
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**: This PR fixes an error in the documentation for Azure
Cosmos DB Integration.
**Issue**: The correct way to import `AzureCosmosDBVectorSearch` is
```python
from langchain_community.vectorstores.azure_cosmos_db import (
AzureCosmosDBVectorSearch,
)
```
While the
[documentation](https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db)
states it to be
```python
from langchain_community.vectorstores.azure_cosmos_db_vector_search import (
AzureCosmosDBVectorSearch,
CosmosDBSimilarityType,
)
```
As you can see in
[azure_cosmos_db.py](c323742f4f/libs/langchain/langchain/vectorstores/azure_cosmos_db.py (L1C45-L2))
**Dependencies:**: None
**Twitter handle**: None
- **Description:** Adds MistralAIEmbeddings class for embeddings, using
the new official API.
- **Dependencies:** mistralai
- **Tag maintainer**: @efriis, @hwchase17
- **Twitter handle:** @LMS_David_RS
Create `integrations/text_embedding/mistralai.ipynb`: an example
notebook for MistralAIEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/mistralai.py`: The embedding class
Create `integration_tests/embeddings/test_mistralai.py`: The test file.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** This new feature enhances the flexibility of pipeline
integration, particularly when working with RESTful APIs.
``JsonRequestsWrapper`` allows for the decoding of JSON output, instead
of the only option for text output.
---------
Co-authored-by: Zhichao HAN <hanzhichao2000@hotmail.com>
- **Description:** Adds documentation for the
`FirestoreChatMessageHistory` integration and lists integration in
Google's documentation
- **Issue:** NA
- **Dependencies:** No
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** add deprecated warning for ErnieBotChat and
ErnieEmbeddings.
- These two classes **lack maintenance** and do not use the sdk provided
by qianfan, which means hard to implement some key feature like
streaming.
- The alternative `langchain_community.chat_models.QianfanChatEndpoint`
and `langchain_community.embeddings.QianfanEmbeddingsEndpoint` can
completely replace these two classes, only need to change configuration
items.
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** docs update following the changes introduced in
#15879
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR:
1. Add `metadata[_job_ib]` in Document returned by any similarity search
2. Add `explore_job_stats` to enable users to explore job statistics and
better the debuggability
3. Set the minimum row limit for running create vector index.
- vertex chat
- google
- some pip openai
- percent and openai
- all percent
- more
- pip
- fmt
- docs: google vertex partner docs
- fmt
- docs: more pip installs
- **Description:** Added a `PolygonAPIWrapper` and an initial
`get_last_quote` endpoint, which allows us to get the last price quote
for a given `ticker`. Once merged, I can add a Polygon tool in `tools/`
for agents to use.
- **Twitter handle:** [@virattt](https://twitter.com/virattt)
The Polygon.io Stocks API provides REST endpoints that let you query the
latest market data from all US stock exchanges.
Support [Lantern](https://github.com/lanterndata/lantern) as a new
VectorStore type.
- Added Lantern as VectorStore.
It will support 3 distance functions `l2 squared`, `cosine` and
`hamming` and will use `HNSW` index.
- Added tests
- Added example notebook
**Description:**
Remove section on how to install Action Server and direct the users t o
the instructions on Robocorp repository.
**Reason:**
Robocorp Action Server has moved from a pip installation to a standalone
cli application and is due for changes. Because of that, leaving only
LangChain integration relevant part in the documentation.
**Description:**
Added aembed_documents() and aembed_query() async functions in
HuggingFaceHubEmbeddings class in
langchain_community\embeddings\huggingface_hub.py file. It will support
to make async calls to HuggingFaceHub's
embedding endpoint and generate embeddings asynchronously.
Test Cases: Added test_huggingfacehub_embedding_async_documents() and
test_huggingfacehub_embedding_async_query()
functions in test_huggingface_hub.py file to test the two async
functions created in HuggingFaceHubEmbeddings class.
Documentation: Updated huggingfacehub.ipynb with steps to install
huggingface_hub package and use
HuggingFaceHubEmbeddings.
**Dependencies:** None,
**Twitter handle:** I do not have a Twitter account
---------
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Major changes:
- Rename `wasm_chat.py` to `llama_edge.py`
- Rename the `WasmChatService` class to `ChatService`
- Implement the `stream` interface for `ChatService`
- Add `test_chat_wasm_service_streaming` in the integration test
- Update `llama_edge.ipynb`
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Community : Modified doc strings and example notebook for Clarifai
Description:
1. Modified doc strings inside clarifai vectorstore class and
embeddings.
2. Modified notebook examples.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description:**
`QianfanChatEndpoint` extends `BaseChatModel` as a super class, which
has a default stream implement might concat the MessageChunk with
`__add__`. When call stream(), a ValueError for duplicated key will be
raise.
- **Issues:**
* #13546
* #13548
* merge two single test file related to qianfan.
- **Dependencies:** no
- **Tag maintainer:**
---------
Co-authored-by: root <liujun45@baidu.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
**Description:** Fixes the word "iteratively" in the use-cases
documentation
**Twitter handle:** @untilhamza
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
See preview :
https://langchain-git-fork-cbornet-astra-loader-doc-langchain.vercel.app/docs/integrations/document_loaders/astradb
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Add missing import of 'ConfigurableField' in 'Full
code comparison' example in LCEL
- **Issue:** Example code not running
- **Dependencies:** None
- **Twitter handle:** @heyyoshan
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This update rectifies an error in the notebook by
changing the input variable from `zhipu_api_key` to `api_key`. It also
includes revisions to comments to improve program readability.
- **Issue:** The input variable in the notebook example should be
`api_key` instead of `zhipu_api_key`.
- **Dependencies:** No additional dependencies are required for this
change.
To ensure quality and standards, we have performed extensive linting and
testing. Commands such as make format, make lint, and make test have
been run from the root of the modified package to ensure compliance with
LangChain's coding standards.
fix of #14905
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Improving documentation
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding resource for Curie model
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** @mmarccode
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Updates docs and cookbooks to import ChatOpenAI, OpenAI, and OpenAI
Embeddings from `langchain_openai`
There are likely more
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
removed the deprecated model from text embedding page of openai notebook
and added the suggested model from openai page
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** `MarkdownHeaderTextSplitter` currently strips header
lines from chunked content. Many applications require these header lines
are preserved. This adds an optional parameter to preserve those headers
in the chunked content.
- **Issue:** #2836 (relevant)
- **Dependencies:** -
- **Tag maintainer:** @baskaryan
- **Twitter handle:** @finnless
Unit tests and new examples in notebook included.
cc @rlancemartin
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds `WasmChat` integration. `WasmChat` runs GGUF models locally or via
chat service in lightweight and secure WebAssembly containers. In this
PR, `WasmChatService` is introduced as the first step of the
integration. `WasmChatService` is driven by
[llama-api-server](https://github.com/second-state/llama-utils) and
[WasmEdge Runtime](https://wasmedge.org/).
---------
Signed-off-by: Xin Liu <sam@secondstate.io>
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR integrates LangChain vectorstore with BigQuery Vector Search.
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes (if applicable),
- **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Vlad Kolesnikov <vladkol@google.com>
- **Description:** Tool now supports querying over 200 million
scientific articles, vastly expanding its reach beyond the 2 million
articles accessible through Arxiv. This update significantly broadens
access to the entire scope of scientific literature.
- **Dependencies:** semantischolar
https://github.com/danielnsilva/semanticscholar
- **Twitter handle:** @shauryr
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
…tch]: import models from community
ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
- **Description:** updates/enhancements to IBM
[watsonx.ai](https://www.ibm.com/products/watsonx-ai) LLM provider
(prompt tuned models and prompt templates deployments support)
- **Dependencies:**
[ibm-watsonx-ai](https://pypi.org/project/ibm-watsonx-ai/),
- **Tag maintainer:** : @hwchase17 , @eyurtsev , @baskaryan
- **Twitter handle:** details in comment below.
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally. ✅
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Adding to my previously, already merged PR I made some further
improvements:
* Added documentation to the existing Pydantic Parser notebook, with an
example using LCEL and `with_retry()` on `OutputParserException`.
* Added an additional output example to the prompt
* More lenient parser in terms of LLM output format
* Amended unit test
FYI @hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>