Commit Graph

1960 Commits

Author SHA1 Message Date
Nino Risteski
0c0a7d19eb
Update openai_multi_functions_agent.ipynb (#10144)
typo fix
2023-09-03 13:00:48 -07:00
Nino Risteski
f968b86652
Update apis.ipynb (#10145)
few typo fixes
2023-09-03 13:00:22 -07:00
Guy Korland
765ef3b486
Add FalkorDB to imports (#10151) 2023-09-03 12:52:28 -07:00
Nino Risteski
746c6ff9c3
Update index.mdx (#10142)
fixed typos
2023-09-02 22:36:26 -07:00
Nino Risteski
fdebd3e02f
Update chat_vector_db.mdx (#10141)
typo fix
2023-09-02 22:36:09 -07:00
Leonid Kuligin
30239b3025
added support for inference from Model Garden (#9367)
#8850

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-09-01 15:58:21 -07:00
Leonid Ganeline
54a8df87b9
📖 docs: fixed integration/llms navbar (#9277)
Fixed navbar:
- renamed several files, so ToC is sorted correctly
- made ToC items consistent: formatted several Titles
- added several links
- reformatted several docs to a consistent format
- renamed several files (removed `_example` suffix)
- added renamed files to the `docs/docs_skeleton/vercel.json`
2023-09-01 15:30:37 -07:00
Bagatur
b485c3048b
rm base64 images from docs (#10110)
Causing problems indexing docs and notebook images don't render after markdown conversion anyways
2023-09-01 15:15:12 -07:00
William FH
f2fc4173c3
Update redirects meta tags (#10109) 2023-09-01 15:14:34 -07:00
Leonid Ganeline
37e435bd00
docs: youtube_search tool example update (#9958)
Added a link to source package; updated title, description.
2023-09-01 13:32:27 -07:00
Leonid Ganeline
3b8ee74e38
docs: google-drive-tool example fix (#10000)
This notebook was mistakenly placed in the `toolkits` folder and appears
within `Agents & Toolkits` menu. But it should be in `Tools`.
Moved example into `tools/`; updated title to consistent format.
2023-09-01 13:31:26 -07:00
seamusp
afd96b2460
docs: agents & callbacks fixes (#10066)
Various improvements to the Agents & Callbacks sections of the
documentation including formatting, spelling, and grammar fixes to
improve readability.
2023-09-01 13:28:55 -07:00
Benjamin Matson
58d7d86e51
feat: add bedrock chat model (#8017)
Replace this comment with:
  - Description: Add Bedrock implementation of Anthropic Claude for Chat
  - Tag maintainer: @hwchase17, @baskaryan
  - Twitter handle: @bwmatson

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-09-01 13:16:57 -07:00
KyrianC
491089754d
EdenAI LLM update. Add models name option (#8963)
This PR follows the **Eden AI (LLM + embeddings) integration**. #8633 

We added an optional parameter to choose different AI models for
providers (like 'text-bison' for provider 'google', 'text-davinci-003'
for provider 'openai', etc.).

Usage:

```python
llm = EdenAI(
    feature="text",
    provider="google",
    params={
        "model": "text-bison",  # new
        "temperature": 0.2,
        "max_tokens": 250,
    },
)

```

You can also change the provider + model after initialization
```python
llm = EdenAI(
    feature="text",
    provider="google",
    params={
        "temperature": 0.2,
        "max_tokens": 250,
    },
)

prompt = """
hi 
"""

llm(prompt, providers='openai', model='text-davinci-003')  # change provider & model
```

The jupyter notebook as been updated with an example well.


Ping: @hwchase17, @baskaryan

---------

Co-authored-by: RedhaWassim <rwasssim@gmail.com>
Co-authored-by: sam <melaine.samy@gmail.com>
2023-09-01 12:11:33 -07:00
Bagatur
71c418725f
index rename delete_mode -> cleanup (#10103) 2023-09-01 11:12:10 -07:00
Bagatur
b927277809
Bagatur/eden type 2 (#10102) 2023-09-01 10:27:27 -07:00
Bagatur
d4380339c1
eden tool nb nit (#10101) 2023-09-01 10:16:39 -07:00
KyrianC
c7a5504789
Add EdenAI Tools (#9764)
This PR follows the Eden AI (LLM + embeddings) integration. #8633

We added different Tools to empower agents with new capabilities :

- text: explicit content detection

- image: explicit content detection

- image: object detection

- OCR: invoice parsing

- OCR: ID parsing

- audio: speech to text

- audio: text to speech

 
We plan to add more in the future (like translation, language detection,
+ others).


Usage:

```python
llm=EdenAI(feature="text",provider="openai", params={"temperature" : 0.2,"max_tokens" : 250})

tools = [
    EdenAiTextModerationTool(providers=["openai"],language="en"),
    EdenAiObjectDetectionTool(providers=["google","api4ai"]),
    EdenAiTextToSpeechTool(providers=["amazon"],language="en",voice="MALE"),
    EdenAiExplicitImageTool(providers=["amazon","google"]),
    EdenAiSpeechToTextTool(providers=["amazon"]),
    EdenAiParsingIDTool(providers=["amazon","klippa"],language="en"),
    EdenAiParsingInvoiceTool(providers=["amazon","google"],language="en"),
]

agent_chain = initialize_agent(
    tools,
    llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
    return_intermediate_steps=True,
)

result = agent_chain(""" i have this text : 'i want to slap you' 
                   first : i want to know if this text contains explicit content or not .
                   second : if it does contain explicit content i want to know what is the explicit content in this text, 
                   third : i want to make the text into speech .
                   if there is URL in the observations , you will always put it in the output (final answer) .
                   """)
```

output: 
>  Entering new AgentExecutor chain...
> I need to extract the information from the ID and then convert it to
text and then to speech
> Action: edenai_identity_parsing
> Action Input:
"https://www.citizencard.com/images/citizencard-uk-id-card-2023.jpg"
> Observation: last_name : 
>   value : ANGELA
> given_names : 
>   value : GREENE
> birth_place : 
> birth_date : 
>   value : 2000-11-09
> issuance_date : 
> expire_date : 
> document_id : 
> issuing_state : 
> address : 
> age : 
> country : 
> document_type : 
>   value : DRIVER LICENSE FRONT
> gender : 
> image_id : 
> image_signature : 
> mrz : 
> nationality : 
> Thought: I now need to convert the information to text and then to
speech
> Action: edenai_text_to_speech
> Action Input: "Welcome Angela Greene!"
> Observation:
https://d14uq1pz7dzsdq.cloudfront.net/0c494819-0bbc-4433-bfa4-6e99bd9747ea_.mp3?Expires=1693316851&Signature=YcMoVQgPuIMEOuSpFuvhkFM8JoBMSoGMcZb7MVWdqw7JEf5~67q9dEI90o5todE5mYXB5zSYoib6rGrmfBl4Rn5~yqDwZ~Tmc24K75zpQZIEyt5~ZSnHuXy4IFWGmlIVuGYVGMGKxTGNeCRNUXDhT6TXGZlr4mwa79Ei1YT7KcNyc1dsTrYB96LphnsqOERx4X9J9XriSwxn70X8oUPFfQmLcitr-syDhiwd9Wdpg6J5yHAJjf657u7Z1lFTBMoXGBuw1VYmyno-3TAiPeUcVlQXPueJ-ymZXmwaITmGOfH7HipZngZBziofRAFdhMYbIjYhegu5jS7TxHwRuox32A__&Key-Pair-Id=K1F55BTI9AHGIK
> Thought: I now know the final answer
> Final Answer:
https://d14uq1pz7dzsdq.cloudfront.net/0c494819-0bbc-4433-bfa4-6e99bd9747ea_.mp3?Expires=1693316851&Signature=YcMoVQgPuIMEOuSpFuvhkFM8JoBMSoGMcZb7MVWdqw7JEf5~67q9dEI90o5todE5mYXB5zSYoib6rGrmfBl4Rn5~yqDwZ~Tmc24K75zpQZIEyt5~ZSnHuXy4IFWGmlIVuGYVGMGKxTGNeCRNUXDhT6TXGZlr4mwa79Ei1YT7KcNyc1dsTrYB96LphnsqOERx4X9J9XriSwxn70X8oUPFfQmLcitr-syDhiwd9Wdpg6J5y
> 
>  Finished chain.

Other examples are available in the jupyter notebook.


This PR is made in parallel with  EdenAI LLM update #8963 
I apologize for the messy PR. While working in implementing Tools we
realized there was a few problems we needed to fix on LLM as well.

Ping: @hwchase17, @baskaryan

---------

Co-authored-by: RedhaWassim <rwasssim@gmail.com>
2023-09-01 08:26:56 -07:00
Bagatur
5f1c67b47c
Mv LCEL docs up a level (#10073) 2023-09-01 08:20:55 -07:00
Harrison Chase
ad9e242a7a
add snippet for max concurrency (#9892) 2023-08-31 16:52:28 -07:00
Stefano Lottini
c710c7303f
fix wrong import line in cassandra doc page for vector store (#10041)
This fixes the exampe import line in the general "cassandra" doc page
mdx file. (it was erroneously a copy of the chat message history import
statement found below).
2023-08-31 16:05:46 -07:00
Jon Bennion
cc6a20d3e6
updated prompt name in documentation for sequential chain (#10048)
Description: updated the prompt name in a sequential chain example so
that it is not overwritten by the same prompt name in the next chain
(this is a sequential chain example)
Issue: n/a
Dependencies: none
Tag maintainer: not known
Twitter handle: not on twitter, feel free to use my git username for
anything
2023-08-31 16:05:18 -07:00
Zizhong Zhang
641b71e2cd
refactor: rename to OpaquePrompts (#10013)
Renamed to OpaquePrompts

cc @baskaryan Thanks in advance!
2023-08-31 12:21:24 -07:00
Bagatur
8d66b00c73
Data anonymizer notebook nit (#10062) 2023-08-31 10:58:13 -07:00
Bagatur
3efab8d3df
implement vectorstores by tencent vectordb (#9989)
Hi there!
I'm excited to open this PR to add support for using 'Tencent Cloud
VectorDB' as a vector store.

Tencent Cloud VectorDB is a fully-managed, self-developed,
enterprise-level distributed database service designed for storing,
retrieving, and analyzing multi-dimensional vector data. The database
supports multiple index types and similarity calculation methods, with a
single index supporting vector scales up to 1 billion and capable of
handling millions of QPS with millisecond-level query latency. Tencent
Cloud VectorDB not only provides external knowledge bases for large
models to improve their accuracy, but also has wide applications in AI
fields such as recommendation systems, NLP services, computer vision,
and intelligent customer service.

The PR includes:
 Implementation of Vectorstore.

I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below

 make format
 make lint
 make coverage
 make test
2023-08-31 00:48:25 -07:00
Bagatur
b1644bc9ad cr 2023-08-31 00:43:34 -07:00
Cameron Vetter
e37d51cab6
fix scoring profile example (#10016)
- Description: A change in the documentation example for Azure Cognitive
Vector Search with Scoring Profile so the example works as written
  - Issue: #10015 
  - Dependencies: None
  - Tag maintainer: @baskaryan @ruoccofabrizio
  - Twitter handle: @poshporcupine
2023-08-31 00:35:06 -07:00
Hyeokjun seo
e2e05ad89e
Fix Typo : openai_api_key -> serpapi_api_key (#10020)
Fixed typo in the comments Notebook. (which says `openai_api_key` for
SerpAPI)
2023-08-31 00:33:13 -07:00
Tomaz Bratanic
f2e8399cc8
Fix link in Neo4j provider page (#10023) 2023-08-31 00:32:42 -07:00
Bagatur
7fa82900cb
guides docs nits (#10005) 2023-08-30 11:07:42 -07:00
Bagatur
2f03e71e67
rename local llm guide (#10004) 2023-08-30 10:52:46 -07:00
Bagatur
781f274d19
make privacy guide section (#10003) 2023-08-30 10:49:20 -07:00
maks-operlejn-ds
a8f804a618
Add data anonymizer (#9863)
### Description

The feature for anonymizing data has been implemented. In order to
protect private data, such as when querying external APIs (OpenAI), it
is worth pseudonymizing sensitive data to maintain full privacy.

Anonynization consists of two steps:

1. **Identification:** Identify all data fields that contain personally
identifiable information (PII).
2. **Replacement**: Replace all PIIs with pseudo values or codes that do
not reveal any personal information about the individual but can be used
for reference. We're not using regular encryption, because the language
model won't be able to understand the meaning or context of the
encrypted data.

We use *Microsoft Presidio* together with *Faker* framework for
anonymization purposes because of the wide range of functionalities they
provide. The full implementation is available in `PresidioAnonymizer`.

### Future works

- **deanonymization** - add the ability to reverse anonymization. For
example, the workflow could look like this: `anonymize -> LLMChain ->
deanonymize`. By doing this, we will retain anonymity in requests to,
for example, OpenAI, and then be able restore the original data.
- **instance anonymization** - at this point, each occurrence of PII is
treated as a separate entity and separately anonymized. Therefore, two
occurrences of the name John Doe in the text will be changed to two
different names. It is therefore worth introducing support for full
instance detection, so that repeated occurrences are treated as a single
object.

### Twitter handle
@deepsense_ai / @MaksOpp

---------

Co-authored-by: MaksOpp <maks.operlejn@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-30 10:39:44 -07:00
Bagatur
98cce7dcd3
update moderation docs (#10002) 2023-08-30 10:34:25 -07:00
Christophe Bornet
9870bfb9cd
Add bucket and object key to metadata in S3 loader (#9317)
- Description: this PR adds `s3_object_key` and `s3_bucket` to the doc
metadata when loading an S3 file. This is particularly useful when using
`S3DirectoryLoader` to remove the files from the dir once they have been
processed (getting the object keys from the metadata `source` field
seems brittle)
  - Dependencies: N/A
  - Tag maintainer: ?
  - Twitter handle: _cbornet

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-30 11:03:24 -04:00
Guy Korland
24c0b01c38
Extend the FalkorDB QA demo (#9992)
- Description: Extend the FalkorDB QA demo
  - Tag maintainer: @baskaryan
2023-08-30 10:13:18 -04:00
wlleiiwang
8c4e29240c implement vectorstores by tencent vectordb 2023-08-30 16:40:58 +08:00
Leonid Ganeline
d03d6f6fd9
Merge branch 'master' into docs-tools-menu 2023-08-29 15:57:25 -07:00
Bagatur
8fb0a9594c
Add LLMonitor Callback Handler Integration - open-source observability & analytics (#9870)
Adds support for [llmonitor](https://llmonitor.com) callbacks.

It enables:
- Requests tracking / logging / analytics
- Error debugging
- Cost analytics
- User tracking

Let me know if anythings neds to be changed for merge.

Thank you!
2023-08-29 15:49:01 -07:00
leo-gan
8c1678a8c7 Updated titles, descriptions. 2023-08-29 15:42:28 -07:00
Bagatur
7bba1d911b
Fix typo in code_understanding.ipynb (#9899)
seperate -> separate
2023-08-29 15:21:32 -07:00
Bagatur
2e65434568
docs: Fix the syntax error, replace "dotenv.load_env()" with "dotenv.… (#9900)
Description: The documents incorrectly mentions "dotenv.load_env()", but
it should actually be "dotenv.load_dotenv()". You can see the screenshot
below for reference:

python-dotenv: 1.0.0


![image](https://github.com/langchain-ai/langchain/assets/2959046/94dc4b51-cc2f-412d-92e9-16b8ff0d513e)
2023-08-29 15:20:24 -07:00
Bagatur
b416f5c0c8
fix a link name format to the dependents document (#9928) 2023-08-29 15:20:06 -07:00
Bagatur
8f199239b8
docs: llms/google vertex AI example update (#9960)
Updated title, description, added sections.
2023-08-29 15:07:18 -07:00
Bagatur
2a03a0087d
docs: memory menu (#9947)
The [Memory](https://python.langchain.com/docs/modules/memory/) menu is
clogged with unnecessary wording.
I've made it more concise by simplifying titles of the example
notebooks.
As results, menu is shorter and better for comprehend.
2023-08-29 15:06:11 -07:00
Bagatur
f7cc125cac
docs: memory types menu (#9949)
The [Memory
Types](https://python.langchain.com/docs/modules/memory/types/) menu is
clogged with unnecessary wording.
I've made it more concise by simplifying titles of the example
notebooks.
As results, menu is shorter and better for comprehend.
2023-08-29 15:05:23 -07:00
Bagatur
16eb935469
Fix for similarity_search_with_score (#9903)
- Description: the implementation for similarity_search_with_score did
not actually include a score or logic to filter. Now fixed.
- Tag maintainer: @rlancemartin
- Twitter handle: @ofermend
2023-08-29 15:04:48 -07:00
Fredrik Gullberg
f69d236a4a
docs: Fix spelling mistakes in apis.ipynb (#9911)
- Description: Fix spelling mistakes in apis.ipynb
- Issue: [#9910](https://github.com/langchain-ai/langchain/issues/9910)

Co-authored-by: Fredrik Gullberg <fredrik.gullberg@klarna.com>
2023-08-29 14:53:00 -07:00
Nate Nethercott
0024824a6e
docs: Fix spelling mistakes in retrievers/get_started.mdx (#9920)
Description: Fix spelling mistakes in retrievers/get_started.mdx
2023-08-29 14:50:07 -07:00
leo-gan
210de0c66b Updated title, description, added sections 2023-08-29 14:31:33 -07:00
Cameron Hutchison
bcc3463ff4
docs: Azure AD Authentication for Azure OpenAI (#9951)
# Description
This PR adds additional documentation on how to use Azure Active
Directory to authenticate to an OpenAI service within Azure. This method
of authentication allows organizations with more complex security
requirements to use Azure OpenAI.

# Issue
N/A

# Dependencies
N/A

# Twitter
https://twitter.com/CamAHutchison
2023-08-29 14:29:27 -07:00
Guy Korland
7cbe872af8
Add support for Falkordb (ex-RedisGraph) (#9821)
Replace this entire comment with:
  - Description: Add support for Falkordb (ex-RedisGraph)
  - Tag maintainer: @hwchase17
  - Twitter handle: @g_korland
2023-08-29 14:22:33 -07:00
Bagatur
ede45f535e
fix intro docs (#9950) 2023-08-29 11:50:07 -07:00
Leonid Ganeline
393816e7bd
Merge branch 'master' into docs-memory-type-menu 2023-08-29 11:46:29 -07:00
Corvus Lee
0fb95ebe66
Docs: enrich SageMaker endpoint embeddings with docstrings and examples (#9924)
Description: added comments to address the relationship between
input/output transformations and the customised inference.py script.
2023-08-29 11:38:52 -07:00
leo-gan
7c7ae34eeb updated .mdx titles and text. 2023-08-29 11:33:30 -07:00
leo-gan
d578efba35 updated notebook titles and text. 2023-08-29 11:25:53 -07:00
Leonid Ganeline
4b6e41a939
Merge branch 'master' into docs-memory-menu 2023-08-29 10:24:07 -07:00
Tomaz Bratanic
6092422e10
Add neo4j provider page (#9941) 2023-08-29 10:09:51 -07:00
leo-gan
c906041aa8 updated notebook titles and text. 2023-08-29 09:58:26 -07:00
Tomaz Bratanic
db13fba7ea
Add neo4j vector support (#9770)
Neo4j has added vector index integration just recently. To allow both
ingestion and integrating it as vector RAG applications, I wrapped it as
a vector store as the implementation is completely different from
`GraphCypherQAChain`. Here, we are not generating any Cypher statements
at query time, we are simply doing the vector similarity search using
the new vector index as if we were dealing with a vector database.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-29 07:54:20 -07:00
Tudor Golubenco
171b0b183b
Pre-release Xata version no longer required (#9915)
Tiny PR: Since we've released version 1.0.0 of the python SDK, we no
longer need to specify the pre-release version when pip installing.
2023-08-29 07:21:22 -07:00
Mike Nitsenko
c80e406e95
Cube semantic loader: allow cubes processing (#9927)
We've started to receive feedback (after launch) that using only views
is confusing.
We're considering this as a good practice, as a view serves as a
"facade" for your data - however, we decided to let users decide this on
their own.

Solves the questions from:
- https://github.com/cube-js/cube/issues/7028
- https://github.com/langchain-ai/langchain/pull/9690
2023-08-29 07:21:01 -07:00
LiaoKong
8f8455b24d fix a link name format to the dependents document 2023-08-29 21:55:05 +08:00
Ofer Mendelevitch
8b8d2a6535 fixed similarity_search_with_score to really use a score
updated unit test with a test for score threshold
Updated demo notebook
2023-08-28 22:26:55 -07:00
Ikko Eltociear Ashimine
766bbd6c6b
Fix typo in code_understanding.ipynb
seperate -> separate
2023-08-29 12:57:19 +09:00
tongtie
82a3c2a557 docs: Fix the syntax error, replace "dotenv.load_env()" with "dotenv.load_dotenv()". 2023-08-29 11:52:50 +08:00
Mazhar (Taha) Mumbaiwala
e80834d783
docs: Fix spelling mistakes in Etherscan.ipynb (#9845) 2023-08-28 19:30:00 -07:00
Philippe PRADOS
7fdb7439e0
Update google drive notebooks (#9851)
Update google drive doc loader and retriever notebooks. Show how to use with langchain-googledrive package.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-28 19:29:35 -07:00
Xiaobing Mi
5d47833ae1
Fix typo in web_scraping.ipynb (#9835) 2023-08-28 19:26:23 -07:00
Leonid Ganeline
b1bffea9c7
docs: fix for title of llm_caching nb (#9891)
Fixed title for the `extras/integrations/llms/llm_caching.ipynb`.
Existing title breaks the sorted order of items in the navbar.
Updated some formatting.
2023-08-28 18:34:04 -07:00
Leonid Ganeline
e01b00aa54
docs: ainetwork update (#9871)
* Added links to the AI Network
* Made title consistent to other tool kits
* Added `integrations/providers/` integration card page
* **No changes** in the example code!
2023-08-28 18:16:22 -07:00
Leonid Ganeline
cf122b6269
docs: Infino example fix (#9888)
- Fixed a broken link in the `integrations/providers/infino.mdx`
- Fixed a title in the `integration/collbacks/infino.ipynb` example
- Updated text format in this example.
2023-08-28 17:42:11 -07:00
Piyush Jain
fe1b9ee6b8
Updated notebook for comprehend moderation (#9875)
### Description
Updated the notebook for comprehend moderation.

cc @baskaryan
2023-08-28 16:01:43 -07:00
William FH
b14d74dd4d
iMessage loader (#9832)
Add an iMessage chat loader
2023-08-28 13:43:59 -07:00
Lance Martin
8393ba9dab
Add instructions for GGUF (#9874)
llama.cpp migrated to GGUF model format, and new releases (e.g.,
[here](https://huggingface.co/TheBloke)) now use GGUF.
2023-08-28 12:56:46 -07:00
hughcrt
3a4d4c940c Change video width 2023-08-28 19:26:33 +02:00
hughcrt
97741d41c5 Add LLMonitorCallbackHandler 2023-08-28 19:24:50 +02:00
eryk-dsai
7f5713b80a
feat: grammar-based sampling in llama-cpp (#9712)
## Description 

The following PR enables the [grammar-based
sampling](https://github.com/ggerganov/llama.cpp/tree/master/grammars)
in llama-cpp LLM.

In short, loading file with formal grammar definition will constrain
model outputs. For instance, one can force the model to generate valid
JSON or generate only python lists.

In the follow-up PR we will add:
* docs with some description why it is cool and how it works
* maybe some code sample for some task such as in llama repo

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-28 09:52:55 -07:00
Harrison Chase
c1badc1fa2
add gmail loader (#9810) 2023-08-27 17:18:09 -07:00
Vikas Sheoran
63921e327d
docs: Fix a spelling mistake in adding_memory.ipynb (#9794)
# Description 
This pull request fixes a small spelling mistake found while reading
docs.
2023-08-26 12:04:43 -07:00
Rosário P. Fernandes
aab01b55db
typo: funtions --> functions (#9784)
Minor typo in the extractions use-case
2023-08-26 11:47:47 -07:00
Sam Partee
a28eea5767
Redis metadata filtering and specification, index customization (#8612)
### Description

The previous Redis implementation did not allow for the user to specify
the index configuration (i.e. changing the underlying algorithm) or add
additional metadata to use for querying (i.e. hybrid or "filtered"
search).

This PR introduces the ability to specify custom index attributes and
metadata attributes as well as use that metadata in filtered queries.
Overall, more structure was introduced to the Redis implementation that
should allow for easier maintainability moving forward.

# New Features

The following features are now available with the Redis integration into
Langchain

## Index schema generation

The schema for the index will now be automatically generated if not
specified by the user. For example, the data above has the multiple
metadata categories. The the following example

```python

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores.redis import Redis

embeddings = OpenAIEmbeddings()


rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users"
)
```

Loading the data in through this and the other ``from_documents`` and
``from_texts`` methods will now generate index schema in Redis like the
following.

view index schema with the ``redisvl`` tool. [link](redisvl.com)

```bash
$ rvl index info -i users
```


Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|---------------|-----------------|------------|
| users | HASH | ['doc:users'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |


### Custom Metadata specification

The metadata schema generation has the following rules
1. All text fields are indexed as text fields.
2. All numeric fields are index as numeric fields.

If you would like to have a text field as a tag field, users can specify
overrides like the following for the example data

```python

# this can also be a path to a yaml file
index_schema = {
    "text": [{"name": "user"}, {"name": "job"}],
    "tag": [{"name": "credit_score"}],
    "numeric": [{"name": "age"}],
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users"
)
```
This will change the index specification to 

Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|----------------|-----------------|------------|
| users2 | HASH | ['doc:users2'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TAG | SEPARATOR | , |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |


and throw a warning to the user (log output) that the generated schema
does not match the specified schema.

```text
index_schema does not match generated schema from metadata.
index_schema: {'text': [{'name': 'user'}, {'name': 'job'}], 'tag': [{'name': 'credit_score'}], 'numeric': [{'name': 'age'}]}
generated_schema: {'text': [{'name': 'user'}, {'name': 'job'}, {'name': 'credit_score'}], 'numeric': [{'name': 'age'}]}
```

As long as this is on purpose,  this is fine.

The schema can be defined as a yaml file or a dictionary

```yaml

text:
  - name: user
  - name: job
tag:
  - name: credit_score
numeric:
  - name: age

```

and you pass in a path like

```python
rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    index_schema=Path("sample1.yml").resolve()
)
```

Which will create the same schema as defined in the dictionary example


Index Information:
| Index Name | Storage Type | Prefixes | Index Options | Indexing |

|--------------|----------------|----------------|-----------------|------------|
| users3 | HASH | ['doc:users3'] | [] | 0 |
Index Fields:
| Name | Attribute | Type | Field Option | Option Value |

|----------------|----------------|---------|----------------|----------------|
| user | user | TEXT | WEIGHT | 1 |
| job | job | TEXT | WEIGHT | 1 |
| content | content | TEXT | WEIGHT | 1 |
| credit_score | credit_score | TAG | SEPARATOR | , |
| age | age | NUMERIC | | |
| content_vector | content_vector | VECTOR | | |



### Custom Vector Indexing Schema

Users with large use cases may want to change how they formulate the
vector index created by Langchain

To utilize all the features of Redis for vector database use cases like
this, you can now do the following to pass in index attribute modifiers
like changing the indexing algorithm to HNSW.

```python
vector_schema = {
    "algorithm": "HNSW"
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    vector_schema=vector_schema
)

```

A more complex example may look like

```python
vector_schema = {
    "algorithm": "HNSW",
    "ef_construction": 200,
    "ef_runtime": 20
}

rds, keys = Redis.from_texts_return_keys(
    texts,
    embeddings,
    metadatas=metadata,
    redis_url="redis://localhost:6379",
    index_name="users3",
    vector_schema=vector_schema
)
```

All names correspond to the arguments you would set if using Redis-py or
RedisVL. (put in doc link later)


### Better Querying

Both vector queries and Range (limit) queries are now available and
metadata is returned by default. The outputs are shown.

```python
>>> query = "foo"
>>> results = rds.similarity_search(query, k=1)
>>> print(results)
[Document(page_content='foo', metadata={'user': 'derrick', 'job': 'doctor', 'credit_score': 'low', 'age': '14', 'id': 'doc:users:657a47d7db8b447e88598b83da879b9d', 'score': '7.15255737305e-07'})]

>>> results = rds.similarity_search_with_score(query, k=1, return_metadata=False)
>>> print(results) # no metadata, but with scores
[(Document(page_content='foo', metadata={}), 7.15255737305e-07)]

>>> results = rds.similarity_search_limit_score(query, k=6, score_threshold=0.0001)
>>> print(len(results)) # range query (only above threshold even if k is higher)
4
```

### Custom metadata filtering

A big advantage of Redis in this space is being able to do filtering on
data stored alongside the vector itself. With the example above, the
following is now possible in langchain. The equivalence operators are
overridden to describe a new expression language that mimic that of
[redisvl](redisvl.com). This allows for arbitrarily long sequences of
filters that resemble SQL commands that can be used directly with vector
queries and range queries.

There are two interfaces by which to do so and both are shown. 

```python

>>> from langchain.vectorstores.redis import RedisFilter, RedisNum, RedisText

>>> age_filter = RedisFilter.num("age") > 18
>>> age_filter = RedisNum("age") > 18 # equivalent
>>> results = rds.similarity_search(query, filter=age_filter)
>>> print(len(results))
3

>>> job_filter = RedisFilter.text("job") == "engineer" 
>>> job_filter = RedisText("job") == "engineer" # equivalent
>>> results = rds.similarity_search(query, filter=job_filter)
>>> print(len(results))
2

# fuzzy match text search
>>> job_filter = RedisFilter.text("job") % "eng*"
>>> results = rds.similarity_search(query, filter=job_filter)
>>> print(len(results))
2


# combined filters (AND)
>>> combined = age_filter & job_filter
>>> results = rds.similarity_search(query, filter=combined)
>>> print(len(results))
1

# combined filters (OR)
>>> combined = age_filter | job_filter
>>> results = rds.similarity_search(query, filter=combined)
>>> print(len(results))
4
```

All the above filter results can be checked against the data above.


### Other

  - Issue: #3967 
  - Dependencies: No added dependencies
  - Tag maintainer: @hwchase17 @baskaryan @rlancemartin 
  - Twitter handle: @sampartee

---------

Co-authored-by: Naresh Rangan <naresh.rangan0@walmart.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 17:22:50 -07:00
Anish Shah
fa0b8f3368
fix broken wandb link in debugging page (#9771)
- Description: Fix broken hyperlink in debugging page
2023-08-25 15:34:08 -07:00
Monami Sharma
12a373810c
Fixing broken links to Moderation and Constitutional chain (#9768)
- Description: Fixing broken links for Moderation and Constitutional
chain
  - Issue: N/A
  - Twitter handle: MonamiSharma
2023-08-25 15:19:32 -07:00
nikhilkjha
d57d08fd01
Initial commit for comprehend moderator (#9665)
This PR implements a custom chain that wraps Amazon Comprehend API
calls. The custom chain is aimed to be used with LLM chains to provide
moderation capability that let’s you detect and redact PII, Toxic and
Intent content in the LLM prompt, or the LLM response. The
implementation accepts a configuration object to control what checks
will be performed on a LLM prompt and can be used in a variety of setups
using the LangChain expression language to not only detect the
configured info in chains, but also other constructs such as a
retriever.
The included sample notebook goes over the different configuration
options and how to use it with other chains.

###  Usage sample
```python
from langchain_experimental.comprehend_moderation import BaseModerationActions, BaseModerationFilters

moderation_config = { 
        "filters":[ 
                BaseModerationFilters.PII, 
                BaseModerationFilters.TOXICITY,
                BaseModerationFilters.INTENT
        ],
        "pii":{ 
                "action": BaseModerationActions.ALLOW, 
                "threshold":0.5, 
                "labels":["SSN"],
                "mask_character": "X"
        },
        "toxicity":{ 
                "action": BaseModerationActions.STOP, 
                "threshold":0.5
        },
        "intent":{ 
                "action": BaseModerationActions.STOP, 
                "threshold":0.5
        }
}

comp_moderation_with_config = AmazonComprehendModerationChain(
    moderation_config=moderation_config, #specify the configuration
    client=comprehend_client,            #optionally pass the Boto3 Client
    verbose=True
)

template = """Question: {question}

Answer:"""

prompt = PromptTemplate(template=template, input_variables=["question"])

responses = [
    "Final Answer: A credit card number looks like 1289-2321-1123-2387. A fake SSN number looks like 323-22-9980. John Doe's phone number is (999)253-9876.", 
    "Final Answer: This is a really shitty way of constructing a birdhouse. This is fucking insane to think that any birds would actually create their motherfucking nests here."
]
llm = FakeListLLM(responses=responses)

llm_chain = LLMChain(prompt=prompt, llm=llm)

chain = ( 
    prompt 
    | comp_moderation_with_config 
    | {llm_chain.input_keys[0]: lambda x: x['output'] }  
    | llm_chain 
    | { "input": lambda x: x['text'] } 
    | comp_moderation_with_config 
)

response = chain.invoke({"question": "A sample SSN number looks like this 123-456-7890. Can you give me some more samples?"})

print(response['output'])


```
### Output
```
> Entering new AmazonComprehendModerationChain chain...
Running AmazonComprehendModerationChain...
Running pii validation...
Found PII content..stopping..
The prompt contains PII entities and cannot be processed
```

---------

Co-authored-by: Piyush Jain <piyushjain@duck.com>
Co-authored-by: Anjan Biswas <anjanavb@amazon.com>
Co-authored-by: Jha <nikjha@amazon.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 15:11:27 -07:00
Lance Martin
4339d21cf1
Code LLaMA in code understanding use case (#9779)
Update Code Understanding use case doc w/ Code-llama.
2023-08-25 14:24:38 -07:00
Lance Martin
2ab04a4e32
Update agent docs, move to use-case sub-directory (#9344)
Re-structure and add new agent page
2023-08-25 11:28:55 -07:00
Lance Martin
985873c497
Update RAG use case (move to ntbk) (#9340) 2023-08-25 11:27:27 -07:00
Harrison Chase
709a67d9bf
multivector notebook (#9740) 2023-08-25 07:07:27 -07:00
Fabrizio Ruocco
cacaf487c3
Azure Cognitive Search - update sdk b8, mod user agent, search with scores (#9191)
Description: Update Azure Cognitive Search SDK to version b8 (breaking
change)
Customizable User Agent.
Implemented Similarity search with scores 

@baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-25 02:34:09 -07:00
Margaret Qian
30151c99c7
Update Mosaic endpoint input/output api (#7391)
As noted in prior PRs (https://github.com/hwchase17/langchain/pull/6060,
https://github.com/hwchase17/langchain/pull/7348), the input/output
format has changed a few times as we've stabilized our inference API.
This PR updates the API to the latest stable version as indicated in our
docs: https://docs.mosaicml.com/en/latest/inference.html

The input format looks like this:

`{"inputs": [<prompt>]}
`

The output format looks like this:
`
{"outputs": [<output_text>]}
`
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-24 22:13:17 -07:00
Harrison Chase
ade482c17e
add twitter chat loader doc (#9737) 2023-08-24 21:55:22 -07:00
Leonid Kuligin
87da56fb1e
Added a pdf parser based on DocAI (#9579)
#9578

---------

Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-08-24 21:44:49 -07:00
Tudor Golubenco
dc30edf51c
Xata as a chat message memory store (#9719)
This adds Xata as a memory store also to the python version of
LangChain, similar to the [one for
LangChain.js](https://github.com/hwchase17/langchainjs/pull/2217).

I have added a Jupyter Notebook with a simple and a more complex example
using an agent.

To run the integration test, you need to execute something like:

```
XATA_API_KEY='xau_...' XATA_DB_URL="https://demo-uni3q8.eu-west-1.xata.sh/db/langchain"  poetry run pytest tests/integration_tests/memory/test_xata.py
```

Where `langchain` is the database you create in Xata.
2023-08-24 17:37:46 -07:00
William FH
dff00ea91e
Chat Loaders (#9708)
Still working out interface/notebooks + need discord data dump to test
out things other than copy+paste

Update:
- Going to remove the 'user_id' arg in the loaders themselves and just
standardize on putting the "sender" arg in the extra kwargs. Then can
provide a utility function to map these to ai and human messages
- Going to move the discord one into just a notebook since I don't have
a good dump to test on and copy+paste maybe isn't the greatest thing to
support in v0
- Need to do more testing on slack since it seems the dump only includes
channels and NOT 1 on 1 convos
-

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-08-24 17:23:27 -07:00
Bagatur
22b6549a34
sort api classes (#9710) 2023-08-24 13:53:50 -07:00
Tomaz Bratanic
dacf96895a
Add the option to use separate LLMs for GraphCypherQA chain (#9689)
The Graph Chains are different in the way that it uses two LLMChains
instead of one like the retrievalQA chains. Therefore, sometimes you
want to use different LLM to generate the database query and to generate
the final answer.

This feature would make it more convenient to use different LLMs in the
same chain.

I have also renamed the Graph DB QA Chain to Neo4j DB QA Chain in the
documentation only as it is used only for Neo4j. The naming was
ambigious as it was the first graphQA chain added and wasn't sure how do
you want to spin it.
2023-08-24 11:50:38 -07:00
Lance Martin
c37be7f5fb
Add Code LLaMA to code QA use case (#9713)
Use [Ollama integration](https://ollama.ai/blog/run-code-llama-locally).
2023-08-24 11:03:35 -07:00
Leonid Ganeline
cf792891f1
📖 docs: compact api reference (#8651)
Updated design of the "API Reference" text
Here is an example of the current format:

![image](https://github.com/langchain-ai/langchain/assets/2256422/8727f2ba-1b69-497f-aa07-07f939b6da3b)

It changed to
`langchain.retrievers.ElasticSearchBM25Retriever` format. The same
format as it is in the API Reference Toc.

It also resembles code: 
`from langchain.retrievers import ElasticSearchBM25Retriever` (namespace
THEN class_name)

Current format is
`ElasticSearchBM25Retriever from langchain.retrievers` (class_name THEN
namespace)

This change is in line with other formats and improves readability.

 @baskaryan
2023-08-24 09:01:52 -07:00