Commit Graph

1583 Commits

Author SHA1 Message Date
Comendeiro
5c516945d0
Add local support for audio models (PR #7329) (#7591)
- Description: run the poetry dependencies
  - Issue: #7329 
  - Dependencies: any dependencies required for this change,
  - Tag maintainer: @rlancemartin

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-02 01:24:53 -07:00
rjanardhan3
68113348cc
Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Joshua Carroll
6705928b9d
Add StreamlitChatMessageHistory (#8497)
Add a StreamlitChatMessageHistory class that stores chat messages in
[Streamlit's Session
State](https://docs.streamlit.io/library/api-reference/session-state).

Note: The integration test uses a currently-experimental Streamlit
testing framework to simulate the execution of a Streamlit app. Marking
this PR as draft until I confirm with the Streamlit team that we're
comfortable supporting it.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 14:28:15 -07:00
Matt Robinson
8961c720b8
docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8
mv (#8595) 2023-08-01 14:17:04 -07:00
Tesfagabir Meharizghi
a7000ee89e
Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
mpb159753
7df2dfc4c2
Add Support for Loading Documents from Huawei OBS (#8573)
Description:
This PR adds support for loading documents from Huawei OBS (Object
Storage Service) in Langchain. OBS is a cloud-based object storage
service provided by Huawei Cloud. With this enhancement, Langchain users
can now easily access and load documents stored in Huawei OBS directly
into the system.

Key Changes:
- Added a new document loader module specifically for Huawei OBS
integration.
- Implemented the necessary logic to authenticate and connect to Huawei
OBS using access credentials.
- Enabled the loading of individual documents from a specified bucket
and object key in Huawei OBS.
- Provided the option to specify custom authentication information or
obtain security tokens from Huawei Cloud ECS for easy access.

How to Test:
1. Ensure the required package "esdk-obs-python" is installed.
2. Configure the endpoint, access key, secret key, and bucket details
for Huawei OBS in the Langchain settings.
3. Load documents from Huawei OBS using the updated document loader
module.
4. Verify that documents are successfully retrieved and loaded into
Langchain for further processing.

Please review this PR and let us know if any further improvements are
needed. Your feedback is highly appreciated!

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-01 09:30:30 -07:00
Harrison Chase
66226d1d4d
add example for memory (#8552) 2023-08-01 01:10:19 -07:00
Shantanu Nair
53f3793504
Fast load conversationsummarymemory from existing summary (#7533)
- Description: Adds an optional buffer arg to the memory's
from_messages() method. If provided the existing memory will be loaded
instead of regenerating a summary from the loaded messages.
 
Why? If we have past messages to load from, it is likely we also have an
existing summary. This is particularly helpful in cases where the chat
is ephemeral and/or is backed by serverless where the chat history is
not stored but where the updated chat history is passed back and forth
between a backend/frontend.

Eg: Take a stateless qa backend implementation that loads messages on
every request and generates a response — without this addition, each
time the messages are loaded via from_messages, the summaries are
recomputed even though they may have just been computed during the
previous response. With this, the previously computed summary can be
passed in and avoid:
  1) spending extra $$$ on tokens, and 
2) increased response time by avoiding regenerating previously generated
summary.

Tag maintainer: @hwchase17
Twitter handle: https://twitter.com/ShantanuNair

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 18:14:11 -07:00
DJ Atha
ec40ead980
Fixed bug7445 where a duplicate restuld_id is added to the vectorstore. (#7573)
- Description: updated BabyAGI examples to append the iteration to the
result id to fix error storing data to vectorstore.
  - Issue: 7445
  - Dependencies: no
  - Tag maintainer: @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didnt want to over complicate the example.
2023-07-31 18:00:01 -07:00
Kenny
1e8fca5518
Add ConcurrentLoader (#7512)
Works just like the GenericLoader but concurrently for those who choose
to optimize their workflow.

@rlancemartin @eyurtsev

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:56:31 -07:00
Danny Davenport
8d2344db43
updates some spelling mistakes (#8537)
Just updating some spelling / grammar issues in the documentation. No
code changes.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-07-31 17:15:29 -07:00
Leonid Kuligin
b4a126ae71
Updated docs on Vertex AI going GA (#8531)
#8074

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-07-31 17:15:04 -07:00
Bharat Raghunathan
c19a0b9c10
doc(prompts): Follow up on broken Prompt Sublink pages (#8530)
- Description: Follow up of #8478  
  - Issue: #8477
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](twitter.com/BharatR123)

The links were still broken after #8478 and sadly the issue was not
caught with either the Vercel app build and `make docs_linkcheck`
2023-07-31 16:46:13 -07:00
Harrison Chase
bca0749a11
conversational retrieval chain in lcel (#8532) 2023-07-31 16:33:07 -07:00
Jeff Huber
07d6d1ca38
fix error in chroma docker instructions (#8533)
This makes the Chroma instructions for Docker work! 


https://python.langchain.com/docs/integrations/vectorstores/chroma#basic-example-using-the-docker-container
2023-07-31 16:32:53 -07:00
Matthew DeGuzman
844eca98d5
Add LLaMa Formatter and AzureML Chat Endpoint (#8382)
## Description

Microsoft and Meta recently [announced their
collaboration](https://blogs.microsoft.com/blog/2023/07/18/microsoft-and-meta-expand-their-ai-partnership-with-llama-2-on-azure-and-windows/)
on LLaMa2. This PR extends the current LLM wrapper and introduces a new
Chat Model wrapper for AzureML to support LLaMa2.

## Dependencies

No dependencies added :)

## Twitter Handles

[@matthew_d13](https://twitter.com/matthew_d13)
[@prakhar_in](https://twitter.com/prakhar_in)

maintainers - @hwchase17, @baskaryan
2023-07-31 16:26:25 -07:00
Anthony Mahanna
1ab773c742
docs: Update ArangoDB Colab URL (#8547)
1-commit PR to update the Google Colab URL of the ArangoDB Graph QA
Chain notebook
2023-07-31 16:11:21 -07:00
Harrison Chase
5e3b968078
router runnable (#8496)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-31 11:07:10 -07:00
Anubhav Bindlish
913a156cff
Minor improvements to rockset vectorstore (#8416)
This PR makes minor improvements to our python notebook, and adds
support for `Rockset` workspaces in our vectorstore client.

@rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-31 09:54:59 -07:00
Harrison Chase
893f3014af add xml agent notebook 2023-07-31 07:33:22 -07:00
Harrison Chase
6556a8fcfd
add initial anthropic agent (#8468)
Co-authored-by: Nuno Campos <nuno@boringbits.io>
2023-07-30 21:30:49 -07:00
Muhammed Al-Dulaimi
9975ba4124
Fix ChromaDB integration -> docker container instructions (#8447)
## Description
This PR handles modifying the Chroma DB integration's documentation.
It modifies the **Docker container** example to fix the instructions
mentioned in the documentation.
In the current documentation, the below `client.reset()` line causes a
runtime error:

```py
...
client = chromadb.HttpClient(settings=Settings(allow_reset=True))
client.reset()  # resets the database
collection = client.create_collection("my_collection")
...
```

`Exception: {"error":"ValueError('Resetting is not allowed by this
configuration')"}`

This is due to the Chroma DB server needing to have the `allow_reset`
flag set to `true` there as well.
This is fixed by adding the `ALLOW_RESET=TRUE` to the `docker-compose`
file environment variable to the docker container before spinning it

## Issue
This fixes the runtime error that occurs when running the docker
container example code

## Tag Maintainer
@rlancemartin, @eyurtsev
2023-07-30 21:11:56 -07:00
Nicolas Raoul
7f9c6c3baa
Fixed typo: papaer -> paper (#8500) 2023-07-30 21:08:11 -07:00
Piyush Jain
b2f8a5bae9
Fixed exports for NeptuneOpenCypherQAChain (#8439)
## Description
The imports for `NeptuneOpenCypherQAChain` are failing. This PR adds the
chain class to the `__init__.py` file to fix this issue.

## Maintainers
@dev2049 
@krlawrence
2023-07-30 20:36:22 -07:00
Bharat Raghunathan
04ebdbe98f
doc(prompts): Add redirects in Prompt subcategories pages (#8478)
- Description: Fixes broken links in some Prompts subcategories in
documentation (Example Selectors, Prompt Templates)
  - Issue: #8477 (Fixes #8477)
  - Dependencies: None
  - Tag maintainer: @baskaryan
  - Twitter handle: [@BharatR123](https://twitter.com/BharatR123)
2023-07-30 19:38:52 -07:00
Ludwig Hubert
08f5e6b801
Fix documentation for from_documents signature (#8482)
Docs for from_documents() were outdated as seen in
https://github.com/langchain-ai/langchain/issues/8457 .

fixes #8457 

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-30 13:24:44 -07:00
Muneeb Ahmad
4923cf029a
Added Proper Documentation for faiss-gpu Installation (#8492)
### Description
In the LangChain Documentation and Comments, I've Noticed that `pip
install faiss` was mentioned, instead of `pip install faiss-gpu`, since
installing `pip install faiss` results in an error. I've gone ahead and
updated the Documentation, and `faiss.ipynb`. This Change will ensure
ease of use for the end user, trying to install `faiss-gpu`.

### Issue: 
Documentation / Comments Related.

### Dependencies:
No Dependencies we're changed only updated the files with the wrong
reference.

### Tag maintainer:
 @rlancemartin, @eyurtsev (Thank You for your contributions 😄 )
2023-07-30 13:24:30 -07:00
Harrison Chase
8f14ddefdf
add anthropic functions wrapper (#8475)
a cheeky wrapper around claude that adds in function calling support
(kind of, hence it going in experimental)
2023-07-30 07:23:46 -07:00
Harrison Chase
490ad93b3c
fix links generation (#8471) 2023-07-29 18:31:33 -07:00
Harrison Chase
ae4638aa35
improve notebooks (#8461) 2023-07-29 12:49:11 -07:00
Harrison Chase
412fa4e1db
add guide notebook (#8258)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->

---------

Co-authored-by: Nuno Campos <nuno@boringbits.io>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-29 09:42:59 -07:00
William FH
b7c0eb9ecb
Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
William FH
7d79178827
Wfh/update guide imports (#8452) 2023-07-28 23:12:10 -07:00
Harrison Chase
17953ab61f
add notebook for sql query (#8442) 2023-07-28 17:44:59 -07:00
Zack Proser
3892cefac6
Minor fixes to enhance notebook usability: (#8389)
- Install langchain
- Set Pinecone API key and environment as env vars
- Create Pinecone index if it doesn't already exist
---
- Description: Fix a couple minor issues I came across when running this
notebook,
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: none,
  - Tag maintainer: @rlancemartin @eyurtsev,
  - Twitter handle: @zackproser (certainly not necessary!)
2023-07-28 17:10:03 -07:00
Amélie
8ee56b9a5b
Feature: Add support for meilisearch vectorstore (#7649)
**Description:**

Add support for Meilisearch vector store.
Resolve #7603 

- No external dependencies added
- A notebook has been added

@rlancemartin

https://twitter.com/meilisearch

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 17:06:54 -07:00
Bharat Raghunathan
62b8b459c6
doc(prompts): Add redirect to fix broken link on Prompts Page (#8408)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-28 16:08:06 -07:00
Bagatur
2311d57df4
mv dropbox (#8438) 2023-07-28 16:07:56 -07:00
Bagatur
2db2987b1b
add experimental ref (#8435) 2023-07-28 14:26:47 -07:00
HeTaoPKU
d5884017a9
Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
Harrison Chase
1b0bfa54cf cr 2023-07-27 22:00:52 -07:00
Jiayi Ni
1efb9bae5f
FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Gordon Clark
e66759cc9d
Github add "Create PR" tool + Docs update (#8235)
Added a new tool to the Github toolkit called **Create Pull Request.**
Now we can make our own langchain contributor in langchain 😁

In order to have somewhere to pull from, I also added a new env var,
"GITHUB_BASE_BRANCH." This will allow the existing env var,
"GITHUB_BRANCH," to be a working branch for the bot (so that it doesn't
have to always commit on the main/master). For example, if you want the
bot to work in a branch called `bot_dev` and your repo base is `main`,
you would set up the vars like:
```
GITHUB_BASE_BRANCH = "main"
GITHUB_BRANCH = "bot_dev"
``` 

Maintainer responsibilities:
  - Agents / Tools / Toolkits: @hinthornw
2023-07-27 19:19:44 -07:00
William FH
ecd4aae818
Few Shot Chat Prompt (#8038)
Proposal for a few shot chat message example selector

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-07-27 18:46:10 -07:00
Karan V
a003a0baf6
fix(petals) allows to run models that aren't Bloom (Support for LLama and newer models) (#8356)
In this PR:

- Removed restricted model loading logic for Petals-Bloom
- Removed petals imports (DistributedBloomForCausalLM,
BloomTokenizerFast)
- Instead imported more generalized versions of loader
(AutoDistributedModelForCausalLM, AutoTokenizer)
- Updated the Petals example notebook to allow for a successful
installation of Petals in Apple Silicon Macs

- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 18:01:04 -07:00
Harrison Chase
25b8cc7e3d
Harrison/update memory docs (#8384)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 17:18:19 -07:00
Taozhi Wang
594f195e54
Add embeddings for AwaEmbedding (#8353)
- Description: Adds AwaEmbeddings class for embeddings, which provides
users with a convenient way to do fine-tuning, as well as the potential
need for multimodality

  - Tag maintainer: @baskaryan

Create `Awa.ipynb`: an example notebook for AwaEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/awa.py`: The embedding class
Create `embeddings/test_awa.py`: The test file.

---------

Co-authored-by: taozhiwang <taozhiwa@gmail.com>
2023-07-27 17:08:00 -07:00
bheroder
dc3ca44e05
Add an example for azure ml managed feature store (#8324)
We are adding an example of how one can connect to azure ml managed
feature store and use such a prompt template in a llm chain. @baskaryan
2023-07-27 16:56:06 -07:00
evelynmitchell
539574670c
Update tot.ipynb (#8387)
Spelling error fix

<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
  2. an example notebook showing its use.

Maintainer responsibilities:
  - General / Misc / if you don't know who to tag: @baskaryan
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
  - Models / Prompts: @hwchase17, @baskaryan
  - Memory: @hwchase17
  - Agents / Tools / Toolkits: @hinthornw
  - Tracing / Callbacks: @agola11
  - Async: @agola11

If no one reviews your PR within a few days, feel free to @-mention the
same people again.

See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
 -->
2023-07-27 16:44:41 -07:00