fireworks[patch]: add usage_metadata to (a)invoke and (a)stream (#22906)

This commit is contained in:
ccurme 2024-06-14 12:07:19 -04:00 committed by GitHub
parent d1b7a934aa
commit f40b2c6f9d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 70 additions and 44 deletions

View File

@ -179,9 +179,11 @@ def _convert_message_to_dict(message: BaseMessage) -> dict:
return message_dict
def _convert_delta_to_message_chunk(
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
def _convert_chunk_to_message_chunk(
chunk: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
choice = chunk["choices"][0]
_dict = choice["delta"]
role = cast(str, _dict.get("role"))
content = cast(str, _dict.get("content") or "")
additional_kwargs: Dict = {}
@ -210,10 +212,21 @@ def _convert_delta_to_message_chunk(
if role == "user" or default_class == HumanMessageChunk:
return HumanMessageChunk(content=content)
elif role == "assistant" or default_class == AIMessageChunk:
if usage := chunk.get("usage"):
input_tokens = usage.get("prompt_tokens", 0)
output_tokens = usage.get("completion_tokens", 0)
usage_metadata = {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
"total_tokens": usage.get("total_tokens", input_tokens + output_tokens),
}
else:
usage_metadata = None
return AIMessageChunk(
content=content,
additional_kwargs=additional_kwargs,
tool_call_chunks=tool_call_chunks,
usage_metadata=usage_metadata,
)
elif role == "system" or default_class == SystemMessageChunk:
return SystemMessageChunk(content=content)
@ -412,29 +425,29 @@ class ChatFireworks(BaseChatModel):
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class = AIMessageChunk
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
for chunk in self.client.create(messages=message_dicts, **params):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
message_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
generation_info = {}
if finish_reason := choice.get("finish_reason"):
generation_info["finish_reason"] = finish_reason
logprobs = choice.get("logprobs")
if logprobs:
generation_info["logprobs"] = logprobs
default_chunk_class = chunk.__class__
chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info or None
default_chunk_class = message_chunk.__class__
generation_chunk = ChatGenerationChunk(
message=message_chunk, generation_info=generation_info or None
)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
yield chunk
run_manager.on_llm_new_token(
generation_chunk.text, chunk=generation_chunk, logprobs=logprobs
)
yield generation_chunk
def _generate(
self,
@ -472,8 +485,15 @@ class ChatFireworks(BaseChatModel):
generations = []
if not isinstance(response, dict):
response = response.dict()
token_usage = response.get("usage", {})
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
if token_usage and isinstance(message, AIMessage):
message.usage_metadata = {
"input_tokens": token_usage.get("prompt_tokens", 0),
"output_tokens": token_usage.get("completion_tokens", 0),
"total_tokens": token_usage.get("total_tokens", 0),
}
generation_info = dict(finish_reason=res.get("finish_reason"))
if "logprobs" in res:
generation_info["logprobs"] = res["logprobs"]
@ -482,7 +502,6 @@ class ChatFireworks(BaseChatModel):
generation_info=generation_info,
)
generations.append(gen)
token_usage = response.get("usage", {})
llm_output = {
"token_usage": token_usage,
"model_name": self.model_name,
@ -500,31 +519,31 @@ class ChatFireworks(BaseChatModel):
message_dicts, params = self._create_message_dicts(messages, stop)
params = {**params, **kwargs, "stream": True}
default_chunk_class = AIMessageChunk
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
async for chunk in self.async_client.acreate(messages=message_dicts, **params):
if not isinstance(chunk, dict):
chunk = chunk.dict()
if len(chunk["choices"]) == 0:
continue
choice = chunk["choices"][0]
chunk = _convert_delta_to_message_chunk(
choice["delta"], default_chunk_class
)
message_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
generation_info = {}
if finish_reason := choice.get("finish_reason"):
generation_info["finish_reason"] = finish_reason
logprobs = choice.get("logprobs")
if logprobs:
generation_info["logprobs"] = logprobs
default_chunk_class = chunk.__class__
chunk = ChatGenerationChunk(
message=chunk, generation_info=generation_info or None
default_chunk_class = message_chunk.__class__
generation_chunk = ChatGenerationChunk(
message=message_chunk, generation_info=generation_info or None
)
if run_manager:
await run_manager.on_llm_new_token(
token=chunk.text, chunk=chunk, logprobs=logprobs
token=generation_chunk.text,
chunk=generation_chunk,
logprobs=logprobs,
)
yield chunk
yield generation_chunk
async def _agenerate(
self,

View File

@ -572,7 +572,7 @@ files = [
[[package]]
name = "langchain-core"
version = "0.2.4"
version = "0.2.6"
description = "Building applications with LLMs through composability"
optional = false
python-versions = ">=3.8.1,<4.0"
@ -581,15 +581,12 @@ develop = true
[package.dependencies]
jsonpatch = "^1.33"
langsmith = "^0.1.66"
packaging = "^23.2"
langsmith = "^0.1.75"
packaging = ">=23.2,<25"
pydantic = ">=1,<3"
PyYAML = ">=5.3"
tenacity = "^8.1.0"
[package.extras]
extended-testing = ["jinja2 (>=3,<4)"]
[package.source]
type = "directory"
url = "../../core"
@ -613,13 +610,13 @@ url = "../../standard-tests"
[[package]]
name = "langsmith"
version = "0.1.73"
version = "0.1.77"
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
optional = false
python-versions = "<4.0,>=3.8.1"
files = [
{file = "langsmith-0.1.73-py3-none-any.whl", hash = "sha256:38bfcce2cfcf0b2da2e9628b903c9e768e1ce59d450e8a584514c1638c595e93"},
{file = "langsmith-0.1.73.tar.gz", hash = "sha256:0055471cb1fddb76ec65499716764ad0b0314affbdf33ff1f72ad5e2d6a3b224"},
{file = "langsmith-0.1.77-py3-none-any.whl", hash = "sha256:2202cc21b1ed7e7b9e5d2af2694be28898afa048c09fdf09f620cbd9301755ae"},
{file = "langsmith-0.1.77.tar.gz", hash = "sha256:4ace09077a9a4e412afeb4b517ca68e7de7b07f36e4792dc8236ac5207c0c0c7"},
]
[package.dependencies]
@ -1551,4 +1548,4 @@ multidict = ">=4.0"
[metadata]
lock-version = "2.0"
python-versions = ">=3.8.1,<4.0"
content-hash = "1bd993cb034f7eeb243d4c0861075008065d31c6c707aeb2e99c6214d72fb409"
content-hash = "d68944d6707245475f18e901001c98aabdf7aae7944c552e8f058f4806c83f0c"

View File

@ -12,7 +12,7 @@ license = "MIT"
[tool.poetry.dependencies]
python = ">=3.8.1,<4.0"
langchain-core = ">=0.2.0,<0.3"
langchain-core = ">=0.2.2,<0.3"
fireworks-ai = ">=0.13.0"
openai = "^1.10.0"
requests = "^2"

View File

@ -4,8 +4,9 @@ You will need FIREWORKS_API_KEY set in your environment to run these tests.
"""
import json
from typing import Optional
from langchain_core.messages import AIMessage
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessageChunk
from langchain_core.pydantic_v1 import BaseModel
from langchain_fireworks import ChatFireworks
@ -93,8 +94,28 @@ async def test_astream() -> None:
"""Test streaming tokens from ChatFireworks."""
llm = ChatFireworks()
full: Optional[BaseMessageChunk] = None
chunks_with_token_counts = 0
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
full = token if full is None else full + token
if token.usage_metadata is not None:
chunks_with_token_counts += 1
if chunks_with_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
async def test_abatch() -> None:

View File

@ -21,17 +21,6 @@ class TestFireworksStandard(ChatModelIntegrationTests):
"temperature": 0,
}
@pytest.mark.xfail(reason="Not implemented.")
def test_usage_metadata(
self,
chat_model_class: Type[BaseChatModel],
chat_model_params: dict,
) -> None:
super().test_usage_metadata(
chat_model_class,
chat_model_params,
)
@pytest.mark.xfail(reason="Not yet implemented.")
def test_tool_message_histories_list_content(
self,